• Title/Summary/Keyword: Run-up Height

Search Result 94, Processing Time 0.034 seconds

Generation and Propagation of Edge Wave (Edge wave의 발생과 전파)

  • 조용식;이봉희
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.71-74
    • /
    • 1995
  • Edge wave는 해안선 근처에서 갇힌(trapped) 파의 한 형태로써, 해안선 근처에서의 산사태(Yeh and Chang, 1994) 또는 지진해일(tsunami)이 해안선에 도달한 후 해안선과의 상호간섭(Shuto, 1990)에 의해서 발생한다. Edge wave는 해안선을 따라 최대 처오름 높이(maximum run-up height)를 유지하며 진행하기 때문에 범람으로 인한 인명 및 재산피해를 야기시킬 수 있으므로 이에 관한 정확한 해석은 매우 중요하다. (중략)

  • PDF

Validating Numerical Analysis Model Modeling Method by Polyhedral Rubble Mound Structure Arrays (다면체 사석배열 해안구조물에 대한 수치해석모델의 모델링 기법 검증)

  • Choi, Woong-Sik;Kim, Kee-Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.723-728
    • /
    • 2014
  • Hydraulic experiments are performed in order to verify the swash effect of seashore structures installed to prevent scouring. However, a great deal of investment and time are required for producing the test apparatus and seashore structure used to perform the hydraulic experiment. The swash effect can be predicted, however, by using a numerical model and validation can be done based on comparisons of the numerical model and hydraulic experiment analysis results, thereby saving the cost and time required for producing the test apparatus and seashore structure. Taking a polyhedral rubble mound structure as the subject, this study performed a comparative analysis of wave run-up and run-down height of the numerical model interpretative results and the hydraulic experiment results, and validated the interpretative simulation wave test modeling technique. The study also predicted the swash effect by using the numerical interpretation approach method, whereby the volume ratio and friction area of the rubble mound were varied for different results.

Field survey of 1983 central East Sea Tsunami : Imwon Port (1983년 동해 중부 지진해일 현장조사 : 임원항)

  • Kim, Sung-Min;Lee, Seung-Oh;Choi, Moon-Kyu;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.97-105
    • /
    • 2007
  • This study has been focus to certify the run-up heights, losses of human lives and property damages due to the 1983 Central East Sea tsunami. We have conducted the interview with indigenous inhabitant and field surveying at the Imwon port, East sea in Korea in order to inquire into the state of things occurred during that period. It is also investigated how much well they are aware of the emergency action plan including the evacuation system. Base on the reliable interviews, we selected and surveyed 10 places at the Imwon port, where the historical maximum overflowing occurred due to the 1983 Central East Sea tsunami. The measured run-up heights are approximately $3.3m{\sim}4.0m$ at the selected 10 places and it is found that the sea water ran over the banks in Imwon stream about 700m upstream from the Imwon port. From this study we can suggest supplementing the present emergency action plan and supply the state-of-the-art inundation map.

Biomechanical Analysis of Injury Factors in the Run UP and Jump Phases of the Jetѐ (발레 Jetė 동작의 도움닫기와 점프구간에서 상해 발생 요인에 대한 생체역학적 분석)

  • Lee, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.295-304
    • /
    • 2012
  • This study, through biomechanical analysis, conducts a risk assessment of injury occurrence in ballet dancers while they perform running and jumping movements. The participants were nine female collegiate students majoring in ballet(age: $20.89{\pm}1.17years$; height: $160.89{\pm}7.01cm$; mass: $48.89{\pm}3.26$). Descriptive data were expressed as $mean{\pm}standard$ deviation(SD) for all variables. An independent t-test was conducted to determine how the following variables differed: duration time, position of the center of gravity, angle of the hip, torque of the hip, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the jump time was two times longer than the run time in the duration time. The jump length was also longer than the run. The angle of the hip and the torque at the hip were higher in the right. The vastus medialis muscle was most frequently used. These findings demonstrate that participants' jumps may require more biomechanical variables for performance of better and more correct $jet{\acute{e}}$.

Analysis of Variability for the Components of VGRF Signal via Increasing the Number of Attempt during Running (달리기 시도 수 증가에 따른 VGRF 신호 성분의 Variability 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.129-134
    • /
    • 2007
  • The purpose of this study was to determine the variability of components of the vertical ground reaction force signal to seek the suitable number of attempt datum to be analyzed during running at 2m/s and 4m/s. For this study, six subjects (height mean:$174.5{\pm}4.4cm$, weight $671.5{\pm}116.4N.$, age:$25.0{\pm}yrs.$) were selected and asked to run at least 3 times each run condition randomly. FFT(fast Fourier transform) was used to analyze the frequency domain analysis of the vertical ground reaction forces signal and an accumulated PSD (power spectrum density) was calculated to reconstruct the certain signal. To examine the deviation of the vertical ground reaction between signals collected from an different number of attempt, variability of frequency, magnitude of passive peak, time up to the passive peak and maximum load rate were determined in a coefficient of variance. The variability analysis revealed that when analyze the vertical reaction force components at 2m/s speed running, which belongs to slow pace relatively, it would be good to calculate these components from signal of one attempt, but 4m/s speed running needs data collected from two attempts to decrease the deviation of signal between attempts. In summary, when analyzing the frequency and passive peak of the vertical reaction force signal during the fast run, it should be considered the number of attempt.

Tsunami Hazard Evaluation for the East Coast of Korea by using Empirical Tsunami Data (경험자료에 의한 동해안의 지진해일 재해도 평가)

  • Kim, Min-Kyu;Choi, In-Kil;Kang, Keum-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2010
  • In this study, a tsunami hazard curve was determined for a probabilistic safety assessment (PSA) of a tsunami event at a Nuclear Power Plant site. A Tsunami catalogue was developed by using the historical tsunami record prior to 1900 and the instrumental tsunami record after 1900. For the evaluation of the return period of the tsunami run-up height, power-law, upper-truncated power law and exponential function were considered for the assessment of regression curves and each result was compared. Although there were in total only 9 tsunami records on the east coast of Korea during the time period of the tsunami catalogue, there is no research like this about tsunami hazard curve evaluation, so this research lays a foundation for probabilistic tsunami hazard assessment (PTHA)

The prediction of maximum wave height for virtual tsunami in the eastern coast of the Korea (가상 지진해일에 의한 동해안에서의 피해 예측)

  • Sim, Ju-Yeol;Choi, Moon-Kyu;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.229-232
    • /
    • 2008
  • The Central East Sea Tsunami caused huge damage to the eastern coast of the Korean Peninsula, eapecially Imwon port was damaged relatively strongly beacause of water depth variation which makes the wave concentration on this port. there are many virtual tsunami in east sea which has a possibility of happening. So, it is very important to expect the region which may be damaged by vritual tsunmis. In this study, modified dispersion-correction terms are used. The modified scheme has the advantage of using the constant spatial grid size and time step size even in real topography. Dynamic linking technique and staggered grid system are used. Using this model some cases of virtual tsunami was simulated and check the region which is occured maximum wave heights on the eastern sea of the Korean peninsula.

  • PDF

Reliability Analysis of Wave Overtopping over a Seawall (호안에서의 월파에 대한 신뢰성 해석)

  • Oh Jung-Eun;Suh Kyung-Duck;Kweon Hyuck-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.69-83
    • /
    • 2006
  • A Level 3 reliability analysis has been performed for wave run-up and overtopping on a sloping seawall. A Monte-Carlo simulation was performed considering the uncertainties of various variables affecting the wave overtopping event. The wave overtopping probability was evaluated from the individual wave run-up by using the wave-by-wave method, while the mean overtopping rate was calculated directly from the significant wave height. Using the calculated overtopping probability and mean overtopping rate, the maximum overtopping volume was also calculated on the assumption of two-parameter Weibull distribution of individual wave overtopping volume. In addition, by changing wave directions, depths, and structure slopes, their effects on wave overtopping were analyzed. It was found that, when the variability of wave directions is considered or the water depth decreases toward shore, wave height become smaller due to wave refraction, which yields smaller mean overtopping rate, overtopping probability and maximum overtopping volume. For the same mean overtopping rate, the expected overtopping probability increases and the expected maximum overtopping volume decreases as approaching toward shore inside surfzone.

Kinematic Analysis of the Men's Long Jump in the IAAF World Championships Daegu 2011 (2011 대구세계육상선수권대회 남자 멀리뛰기 경기의 운동학적 분석)

  • Seo, Jung-Suk;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Kim, Ho-Mook
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.595-602
    • /
    • 2011
  • The long jump motion of 8 finalist of men's long jump of IAAF World Championships Daegu 2011 were analysed and the kinematic characteristics of the technique were investigated. The kinematic characteristics of long jump motion of 8 finalist were as follows. In the run-up phase, the average length of 3, 2, and 1 stride were $2.21{\pm}0.08$ m, $2.46{\pm}0.18$ m, and $2.19{\pm}0.16$ m, respectively. The change in the height of the center of gravity was $0.09{\pm}0.02$ m. The average velocity of 3, 2, and 1 stride was $10.37{\pm}0.32$ m/s, $9.63{\pm}0.32$ m/s, and $10.69{\pm}10.69$ m/s, respectively. In the take-off phase, the horizontal velocity, the vertical velocity, the reduction of horizontal velocity was $9.00{\pm}0.37$ m/s, $3.04{\pm}0.27$ m/s, and $1.69{\pm}0.34$ m/s, respectively. The minimum knee angle and the take off angle was $157{\pm}6.57^{\circ}$ and $18.5{\pm}2.24^{\circ}$, respectively. In the flight phase, the flight time and the maximum height of the center of gravity was $0.82{\pm}0.05$ s, and $1.70{\pm}0.10$ m, respectively. In the landing phase, the landing length was $0.51{\pm}0.06$ m. The body angle, the knee angle, and the hip angle was $71{\pm}20.93^{\circ}$, $136{\pm}19.19^{\circ}$, and $85{\pm}9.58^{\circ}$, respectively. The kinematic characteristics of long jump motion with good record were shown as follows. The reduction of the horizontal velocity in the take-off phase was minimized while the velocity of the run-up were maximally maintained. The vertical velocity in the take-off phase was increased with rapidly extended knee and the high center of gravity.

Kinematic Analysis of Women's Long Jump at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 여자 멀리뛰기 경기의 운동학적 분석)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • The long jump motions of 8 finalists in the women's long jump at the IAAF World Championships, Daegu 2011 were analyzed, and the kinematic characteristics of their techniques were investigated. The kinematic characteristics of the long jump motion of the 8 finalists were as follows. In the run-up phase, the length of the 2 stride was $108{\pm}6.92%$ that of the 3 stride. The length of the 1 stride was $91{\pm}5.78%$ that of the 2 stride. The change in the height of the center of gravity was $0.07{\pm}0.03$ m. The maximum velocity during the run-up phase was $9.44{\pm}0.13$ m at the 1 stride. In the take-off phase, the horizontal velocity, vertical velocity, reduction in horizontal velocity were $7.80{\pm}0.15$ m/s, $2.96{\pm}0.14$ m/s, and $1.64{\pm}0.19$ m/s, respectively. The minimum knee angle and take-off angle were $151{\pm}8.89^{\circ}$ and $20.7{\pm}1.03^{\circ}$, respectively. In the flight phase, the flight time and maximum height of the center of gravity were $0.78{\pm}0.03$ s, and $1.60{\pm}0.05$ m, respectively. In the landing phase, the landing length was $0.50{\pm}0.07$ m. The trunk angle, knee angle, and hip angle were $74{\pm}18.75^{\circ}$, $131{\pm}10.45^{\circ}$, and $82{\pm}9.03^{\circ}$, respectively. The kinematic characteristics of the motion of a good long jump were as follows. The reduction in the horizontal velocity in the take-off phase was minimized, and the maximum velocity of the run-up was maintained. The vertical velocity in the take-off phase was increased using a rapidly extended knee and high center of gravity.