• Title/Summary/Keyword: Ruminal Turnover Rate

Search Result 4, Processing Time 0.022 seconds

Ruminal Degradation of Sugarcane Stalk

  • Kawashima, T.;Sumamal, W.;Pholsen, P.;Chaithiang, R.;Hayashi, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1280-1284
    • /
    • 2003
  • The number of protozoa and VFA content in the rumen fluid, in situ disappearance and turnover rate were examined with four rumen-fistulated cattle given either sugarcane stalk or Ruzi grass hay in order to clarify the manner of rumen digestion of sugarcane stalk. Cattle were given either sugarcane stalk or Ruzi grass hay at 1.0% of body weight level with commercial concentrate feed. Feeding sugarcane stalk reduced acetate content and increased propionate and butyrate contents in rumen fluid. While rapidlysoluble fraction of sugarcane stalk was 42%, the insoluble but potentially degradable fraction was only 17%. This clearly showed that sugarcane stalk mainly consisted of water soluble fraction (i.e. sugar) and tough fiber (i.e. bagasse). The ruminal degradation rate of both Ruzi grass hay and sugarcane stalk was lower in the animal given sugarcane stalk in comparison with those given Ruzi grass hay. While the turnover rate of liquid phase was about 50% higher in the animals given sugarcane stalk than in the animals given Ruzi grass hay, that of the solid phase was about 40% lower in the animals given sugarcane stalk. The effective degradability of DM of sugarcane stalk was higher than that of Ruzi grass hay. Sugarcane would be a promising roughage for ruminants in the tropics especially, in the dry season.

PARTICLE POOL SIZE AND TURNOVER RATE OF INGESTA IN THE RETICULO-RUMEN OF NORMAL AND ABSESSED SHEEP

  • Okamoto, M.;Miyazaki, H.;Oura, R.;Sekine, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.243-246
    • /
    • 1990
  • Sixteen mature sheep were fed chaffed orchardgrass hay once a day for 7 days. In 7th day, four sheep were slaughtered either prior to eating, 2, 8 or 16 hours after the commencement of eating to measure digesta pool size and particle size distribution in the reticulo-rumen. One sheep slaughtered at 8 hours after feeding had absesses at the cardia and in the lungs and could not ruminate normally. Time spent eating and rumination in the sheep on the day before slaughtering were 85 and 29 (pseudo-rumination 227) minutes a day, compared to those were 112 and 277 minutes in the other animals, respectively. Total actual chewing time in the sheep with absesses and the other animals were 98 and $373{\pm}132$ minutes, respectively. Dry matter(DM) intake in the sheep was $2.9g/kgBW^{0.75}$ which was only about 17% of that in the other animals. The pool sizes of reticulo-rumen DM and neutral detergent fiber (NDF) were somewhat smaller in the sheep than the others. The pool sizes of large particle (>1.18mm) DM and NDF in the animal were similar with those in the other animals. Mean DM retention time in the sheep was 207.4 hours which was about 4.2 times longer than that in the other animals.

Effects of Formalin Treated Soy Bean as a Source of Rumen Undegradable Protein on Rumen Functions of Non-lactating Dairy Cows on Concentrate Based-diets

  • Kanjanapruthipong, J.;Vajrabukka, C.;Sindhuvanich, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1439-1444
    • /
    • 2002
  • An objective of this study was to determine the effects of increasing contents of rumen undegradable protein (RUP) from formalin treated soy bean (FSBM) on rumen functions. Four rumen canulated non-lactating cows were randomly allocated to total mixed rations (TMR) containing different proportions of soy bean meal (SBM) and FSBM. Of rumen fermentation characteristics, concentrations of ruminal fluid ammonia and molar proportions of isoacids decreased with increasing contents of RUP in diets (p<0.01). The animals on TMR containing only SBM gained less weight and had smaller rumen volume than those on TMR containing RUP from FSBM (p<0.05). Organic matter and neutral detergent fiber digestibility in sacco were not different (p>0.05). The density of protozoa particularly small Entodinium sp. in ruminal fluid was higher in animal fed TMR containing SBM:FSBM (34:66) and FSBM than those fed TMR containing SBM:FSBM (66:34) and SBM (p<0.01). Total viable count, and net microbial protein synthesis as indicated by purine derivatives in urine increased with increasing contents of RUP from FSBM (p<0.01). It can be concluded that a reduction in net microbial protein synthesis in the rumen with increasing contents of RUP in the diet can be due to the reduction of preformed protein available for microbial growth as well as an increased turnover rate of microbial cells by predatory activity of protozoa.

Effects of Non-protein Energy Intake on Whole Body Protein Synthesis, Nitrogen Retention and Glucose Turnover in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.536-542
    • /
    • 2007
  • The responses of whole body protein and glucose kinetics and of nitrogen (N) metabolism to non-protein energy intake (NPEI) were determined using an isotope dilution approach and measurement of N balance in three adult male goats. The diets containing 1.0, 1.5 and 2.0 times ME maintenance requirement, with fixed intake of CP (1.5 times maintenance) and percentage of hay (33%), were fed twice daily for each 21 d experimental period. After an adaptation period of 11 d, N balance was determined over 3 d. On day 17, whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were determined during the absorptive state by a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine, [$^2H_4$]tyrosine and [$^{13}C_6$]glucose, with simultaneous measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also measured at 6 h after feeding over 3 d. Nitrogen retention tended to increase (p<0.10) with increasing NPEI, although digestible N decreased linearly (p<0.05). Increasing NPEI decreased (p<0.01) ammonia N concentration, but increased acetate (p<0.05) and propionate (p<0.05) concentrations in the rumen. Despite decreased plasma urea N concentration (p<0.01), increased plasma tyrosine concentration (p<0.05), and trends toward increased plasma total amino N (p<0.10) and phenylalanine concentrations (p<0.10) were found in response to increasing NPEI. Increasing NPEI increased ILR of both glucose (p<0.01) and phenylalanine (p<0.05), but did not affect ($p{\geq}0.10$) that of tyrosine. Whole body protein synthesis increased (p<0.05) in response to increasing NPEI, resulting from increased utilization rate for protein synthesis (p<0.05) and unchanged hydroxylation rate of phenylalanine ($p{\geq}0.10$). These results suggest that increasing NPEI may enhance WBPS and glucose turnover at the absorptive state and improve the efficiency of digestible N retention in goats, with possibly decreased ammonia and increased amino acid absorption. In addition, simultaneous increases in WBPS and glucose ILR suggest stimulatory effect of glucose availability on WBPS, especially when sufficient amino acid is supplied.