• 제목/요약/키워드: Ruminal Development

검색결과 92건 처리시간 0.019초

Effects of Whole Crop Corn Ensiled With Cage Layer Manure on Nutritional Quality and Microbial Protein Synthesis in Sheep

  • Kim, S.C.;Kim, J.H.;Kim, C.H.;Lee, J.C.;Ko, Y.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권11호
    • /
    • pp.1548-1553
    • /
    • 2000
  • An experiment was conducted to study the nutritional quality of whole crop corn silage ensiled with cage layer manure in sheep. Treatments were designed as a $3{\times}3$ Latin square with 16-day periods. Sheep were allotted in one of three diet-treatments, which were whole crop corn silage (CS), whole crop corn+30% cage layer manure (CLM) silage (based on DM; MS) and rice straw+concentrate (SC) mixed at 8:2 ratio (on DM basis). Silage ensiled with CLM significantly increased (p<0.05) digestibilities of crude protein, NDF and ADF, TDN over the other treatments. Ruminal pH in sheep fed SC was significantly (p<0.05) higher than that of the other diets at 0.5, 1, 2, 4 and 8 h after feeding. Ruminal ammonia nitrogen concentration of the MS treatment was significantly (p<0.05) higher than that of the other treatments at 0, 1, 2 h after feeding. The MS treatment highly increased (p<0.05) feed intake, digestibility of organic matter and crude protein, nitrogen intake and retained nitrogen. The MS treatment highly increased (p<0.05) purine derivative (PD) excretion leading to higher microbial protein synthesis.

반추위 곰팡이 다양성 조사 : 메타분석 (Diversity Census of Fungi in the Ruminal Microbiome: A meta-analysis)

  • 송재용;정진영;김민석
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.466-472
    • /
    • 2017
  • 본 연구의 목적은 곰팡이 28S rDNA 염기서열의 메타분석을 통하여 반추위 곰팡이의 다양성을 조사하는데 있다. 'rumen'과 'ruminal'이 반추위 곰팡이 유래 염기서열들을 회수하기 위한 검색어로 사용되었다. 2016년 9월부로 모든 28S rDNA 염기서열이 보관되어 있는 Ribosomal Database Project(RDP, http://rdp.cme.msu.edu) 데이터베이스에서 반추위 곰팡이 유래 28S rDNA 유전자 염기서열(n=165)을 획득하였다. 총 165개의 염기서열은 분류학상의 '문(phylum)'인 Ascomycota, Neocallimastigomycota 및 Basidiomycota로 분류되었고, 165개의 염기서열 중에서 각각 109개, 48개, 8개의 염기서열을 차지하였다. Ascomycota 염기서열은 식물병원성곰팡이나 마이코톡신을 생성하는 곰팡이를 포함하고 있는 '속(genus)' Pseudonectria, Magnaporthe, Alternaria, Cochliobolus, Cladosporium 및 Davidiella로 분류되었다. 또한, Basidiomycota 염기서열은 식물병원성곰팡이를 포함하고 있는 '속(genus)' Thanatephorus와 Cryptococcus로 분류되었다. 뿐만 아니라, Neocallimastigomycota 염기서열의 경우 섭취된 조사료의 주요 구조탄수화물을 분해하는 '속(genus)' Cyllamyces, Neocallimastix, Anaeromyces, Caecomyces, Orpinomyces, Piromyces로 분류되었다. 본 연구는 처음으로 28S rDNA 염기서열의 메타분석을 통해 반추위 곰팡이 다양성에 대한 정보를 통합적으로 제공하였다. 본 연구의 결과는 향후 반추위 곰팡이 연구에 대한 방향을 제공할 것이고, 새로운 분석도구 개발에 응용될 수 있을 것이다.

Enhancing Mulberry Leaf Meal with Urea by Pelleting to Improve Rumen Fermentation in Cattle

  • Tan, N.D.;Wanapat, M.;Uriyapongson, S.;Cherdthong, A.;Pilajun, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권4호
    • /
    • pp.452-461
    • /
    • 2012
  • Four, ruminally fistulated crossbred (Brahman${\times}$native) beef cattle with initial body weight of $420{\pm}15kg$ were randomly assigned according to a $4{\times}4$ Latin square design. The dietary treatments were mulberry leaf pellet (MUP) supplementation at 0, 200, 400 and 600 g/hd/d with rice straw fed to allow ad libitum intake. All steers were kept in individual pens and supplemented with concentrate at 5 g/kg of body weight daily. The experiment was 4 periods, and each lasted 21 d. During the first 14 d, all steers were fed their respective diets ad libitum and during the last 7 d, they were moved to metabolism crates for total urine and fecal collection. It was found that increasing MUP levels resulted in linearly increasing rice straw and total intakes (p<0.05). Ruminal temperature and pH were not significantly affected by MUP supplementation while $NH_3$-N concentration was increased (p<0.05) and maintained at a high level (18.5 mg/dl) with supplementation of MUP at 600 g/hd/d. Similarly, viable total bacteria in the rumen and cellulolytic bacteria were enriched by MUP supplementation at 600 g/hd/d. However, the rumen microbial diversity determined with a PCR-DGGE technique showed similar methanogenic diversity between treatments and sampling times and were similar at a 69% genetic relationship as determined by a UPGMA method. Based on this study, it could be concluded that supplementation of MUP at 600 g/hd/d improved DM intake, ruminal $NH_3$-N, and cellulolytic bacteria thus iimproving rumen ecology in beef cattle fed with rice straw.

미생물제 처리에 의한 이탈리안 라이그라스 사일리지의 In vitro 및 In situ 반추위 발효특성에 미치는 영향 (Effects of Different Microbial Culture Supplements on In vitro and In situ Ruminal Fermentation Characteristics of Italian ryegrass Silage)

  • 임동현;기광석;최순호;김태일
    • 한국초지조사료학회지
    • /
    • 제36권4호
    • /
    • pp.309-317
    • /
    • 2016
  • 본 연구는 국내산 조사료인 IRG 사일리지의 이용성을 증진하기 위해 다양한 미생물제의 첨가 시 IRG 사일리지의 in vitro 반추위 발효특성 및 소화율에 미치는 영향을 조사하였으며, 미생물제의 접종 후 배양시간이 경과함에 따라 IRG 사일리지의 품질 및 in situ 반추위 소화율에 미치는 영향을 분석하였다. 미생물제로는 LC, BS 및 SC ($2.7{\times}10^7CFU/m{\ell}$)를 사용하였으며, IRG 사일리지에 $0.5{\times}10^4CFU/g$가 되도록 첨가하여 수행하였다. In vitro 실험 결과, 암모니아태 질소 함량은 12시간 배양 시 대조구보다 미생물제 처리구에서 높았고(p<0.05), 총 VFA 농도와 건물 분해율의 경우에도 유의적 차이는 없었지만, 대조구보다 미생물제 처리구에서 증가하였으며, 특히 L. casei에서 높게 나타났다. 미생물제를 접종한 후 5일간 배양한 결과, IRG 사일리지의 pH는 대조구보다 미생물제 처리구에서 낮았으며(p<0.05), 젖산 농도는 배양 1~5일 동안 대조구보다 미생물제 처리구에서 높았으며(p<0.05), 다른 처리구보다 LC-IRGS에서 접종 직후 가장 높았다(p<0.05). In situ 건물 분해율은 대조구보다 모든 처리구에서 증가하는 경향을 나타내었으며, 접종 직후에는 SC-IRGS에서 높았으나 이후 LC-IRGS에서 증가하였다. 본 연구결과를 보면, IRG 사일리지의 이용성을 제고하기 위해 LC, BS 및 SC을 활용한다면 IRG 사일리지의 반추위 내 소화율이 개선될 수 있으며, 특히 IRG 사일리지에 L. casei를 첨가하여 단시간 추가 발효하여 젖소에 급여한다면 IRG 사일리지 내 초산 및 낙산의 감소로 품질 및 소화율 개선에 효과가 있을 것으로 사료된다.

Effects of LCFA on the Gas Production, Cellulose Digestion and Cellulase Activities by the Rumen Anaerobic Fungus, Neocallimastix frontalis RE1

  • Lee, S.S.;Ha, J.K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권8호
    • /
    • pp.1110-1117
    • /
    • 2001
  • Responses of the rumen fungus, Neocallimastix frontalis RE1, to long chain fatty acid (LCFA) were evaluated by measuring gas production, filter paper (FP) cellulose digestion and polysaccharidase enzyme activities. LCFA (stearic acid, $C_{18:0}$; oleic acid, $C_{18:1}$; linoleic acid, $C_{18:2}$ and linolenic acid, $C_{18:3}$) were emulsitied by ultrasonication under anaerobic condition, and added to the medium. When N frontalis RE1 was grown in culture with stearic, oleic and linoleic acid, the cumulative gas production, gas pool size, FP cellulose digestion and enzymes activities significantly (p<0.05) increased at some incubation times(especially, exponential phases of fungal growth, 48~120 h of incubation) relative to that for control cultures. However, the addition of linolenic acid strongly inhibited all of the investigated parameters up to 120 h incubation, but not after 168 and 216 h of incubation. These results indicated that stearic, oleic and linoleic acids tended to have great stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effects on the cellulolysis by the rumen fungus. These results are the first report of the effect of LCFAs on the ruminal fungi. Further research is needed to identify the mode of action of LCFAs on fungal strains and to verify whether or not ruminal fungi have ability to hydrate unsaturated LCFAs to saturated FAs. There was high correlation between cumulative in vitro gas production and fungal growth (94.78%), FP cellulose degradation (96.34%), CMCase activity(90.86%) or xylanase activity (87.67%). Thus measuring of cumulative gas production could be a useful tool for evaluating fungal growth and/or enzyme production by ruminal fungi.

Effects of Sunflower Oil Supplementation in Cassava Hay Based-diets for Lactating Dairy Cows

  • Chantaprasarn, N.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.42-50
    • /
    • 2008
  • Twenty-four, lactating dairy cows were randomly assigned according to a Rrandomized complete block design (RCBD) to investigate the effect of sunflower oil supplementation (SFOS) with cassava hay based-diets on feed intake, digestibility of nutrients, rumen fermentation efficiency and milk production. The treatments were as follows: T1 = Control, using commercial concentrate as a supplement (CON); T2 = Concentrate with cassava hay (CHSO-0); T3 = Concentrate with cassava hay and 2.5% sunflower oil (CHSO-2.5); T4 = Concentrate with cassava hay and 5% sunflower oil (CHSO-5). The cows were offered concentrate feed at a ratio of concentrate to milk production of 1:2 and urea-treated rice straw was fed ad libitum. The results revealed that feed intake, digestibility of nutrients and ruminal pH were similar among all treatments, while ruminal NH3-N was lower (p<0.05) with SFOS. Blood urea-N (BUN) and milk urea-N (MUN) were not significantly affected by SFOS. The ruminal concentrations of volatile fatty acids were significantly different among the treatments. Sunflower oil supplementation significantly increased concentrations of unsaturated fatty acids, and ratio of unsaturated to saturated fatty acids in the milk, particularly the conjugated fatty acids, was significantly enhanced. Furthermore, production costs of treatments with sunflower oil supplementation were lower than for the control. Based on this study, SFOS in cassava hay based-diets improves rumen ecology, milk yield and milk quality, especially in terms of conjugated linoleic acids.

Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives

  • Majewska, Malgorzata P.;Miltko, Renata;Belzecki, Grzegorz;Kedzierska, Aneta;Kowalik, Barbara
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1146-1156
    • /
    • 2021
  • Objective: The aim of the study was to compare the effect of two plant additives, rich in polyphenolic compounds, supplemented to sheep diets on microorganisms and carbohydrate fermentation in rumen. Methods: In the experiment, 6 ewes of the Polish Mountain breed were fitted with ruminal cannulas. Sheep were divided into three feeding groups. The study was performed in a cross-over design of two animals in each group, with three experimental periods (n = 6 per each group). The animals were fed a control diet (CON) or additionally received 3 g of dry and milled lingonberry leaves (VVI) or oak bark (QUE). Additionally, plant material was analyzed for tannins concentration. Results: Regardless of sampling time, QUE diet increased the number of total protozoa, as well as Entodinium spp., Diplodinium spp. and Isotrichidae family, while decreased bacterial mass. In turn, a reduced number of Diplodinium spp. and increased Ophryoscolex spp. population were noted in VVI fed sheep. During whole sampling time (0, 2, 4, and 8 h), the number of protozoa in ruminal fluid of QUE sheep was gradually reduced as opposed to animals receiving CON and VVI diet, where rapid shifts in the protozoa number were observed. Moreover, supplementing sheep with QUE diet increased molar proportions of butyrate and isoacids in ruminal fluid. Unfortunately, none of the tested additives affected gas production. Conclusion: The addition of VVI or QUE in a small dose to sheep diets differently affected rumen microorganisms and fermentation parameters, probably because of various contribution of catechins in tested plant materials. However, it is stated that QUE diet seems to create more favorable conditions for growth and development of ciliates. Nonetheless, the results of the present study showed that VVI and QUE additives could serve as potential natural modulators of microorganism populations and, consequently, carbohydrate digestion in ruminants.

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Changes of Microbial Population in the Rumen of Dairy Steers as Influenced by Plant Containing Tannins and Saponins and Roughage to Concentrate Ratio

  • Anantasook, N.;Wanapat, M.;Cherdthong, A.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권11호
    • /
    • pp.1583-1591
    • /
    • 2013
  • The objective of this study was to investigate microbial population in the rumen of dairy steers as influenced by supplementing with dietary condensed tannins and saponins and different roughage to concentrate ratios. Four, rumen fistulated dairy steers (Bos indicus) were used in a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The main factors were two roughage to concentrate ratios (R:C, 60:40 and 40:60) and two supplementations of rain tree pod meal (RPM) (0 and 60 g/kg of total DM intake). Chopped 30 g/kg urea treated rice straw was used as a roughage source. All animals received feed according to respective R:C ratios at 25 g/kg body weight. The RPM contained crude tannins and saponins at 84 and 143 g/kg of DM, respectively. It was found that ruminal pH decreased while ruminal temperature increased by a higher concentrate ratio (R:C 40:60) (p<0.05). In contrast, total bacterial, Ruminococus albus and viable proteolytic bacteria were not affected by dietary supplementation. Numbers of fungi, cellulolytic bacteria, Fibrobactor succinogenes and Ruminococus flavefaciens were higher while amylolytic bacteria was lower when steers were fed at 400 g/kg of concentrate. The population of Fibrobactor succinogenes, was found to be higher with RPM supplementation. In addition, the use of real-time PCR technique indicated that the population of protozoa and methanogens were decreased (p<0.05) with supplementation of RPM and with an increasing concentrate ratio. Supplementation of RPM and feeding different concentrate ratios resulted in changing the rumen microbes especially, when the animals were fed at 600 g/kg of concentrate and supplemented with RPM which significantly reduced the protozoa and methanogens population.

Dragon fruit (Hylocereus undatus) peel pellet as a rumen enhancer in Holstein crossbred bulls

  • Matra, Maharach;Totakul, Pajaree;Viennasay, Bounnaxay;Phesatcha, Burarat;Wanapat, Metha
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.594-602
    • /
    • 2021
  • Objective: An experiment was conducted to assess the effect of dragon fruit peel pellet (DFPP) as a rumen enhancer of dry matter consumption, nutrient digestibilities, ruminal ecology, microbial protein synthesis and rumimal methane production in Holstein crossbred bulls. Methods: Four animals, with an average live-weight of 200±20 kg were randomly assigned in a 4×4 Latin square design to investigate the influence of DFPP supplementation. There were four different dietary treatments: without DFPP, and with 200, 300, and 400 g/h/d, respectively. Results: Results revealed that dry matter consumption of total intake, rice straw and concentrate were not significantly different among treatments (p>0.05). It was also found that ruminal pH was not different among treatments (p>0.05), whilst protozoal group was reduced when DFPP increased (p<0.01). Blood urea nitrogen and NH3-N concentrations were increased at 400 g of DFPP supplementation (p<0.01). Additionally, volatile fatty acid production of propionate was significantly enhanced by the DFPP supplementation (p<0.05), while production of methane was consequently decreased (p<0.05). Furthermore, microbial protein synthesis and urinary purine derivatives were remarkably increased especially at 400 g of DFPP supplementation (p<0.05). Conclusion: Plant secondary compounds or phytonutrients (PTN) containing saponins (SP) and condensed tannins (CT) have been reported to influence rumen fermentation. DFPP contains both CT and SP as a PTN. The addition of 400 g of DFPP resulted in improved rumen fermentation end-products especially propionate (C3) and microbial protein synthesis. Therefore, DFPP is a promising rumen enhancer and indicated a significant potential of DFPP as feedstuff for ruminant feed to mitigate rumen methane production.