• 제목/요약/키워드: Rumen Volume

검색결과 43건 처리시간 0.018초

Effects of Micronization on the In situ and In vitro Digestion of Cereal Grains

  • McAllister, T.A.;Sultana, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권7호
    • /
    • pp.929-939
    • /
    • 2011
  • The effects of micronization on in situ and in vitro nutrient disappearances of wheat, barley and corn were investigated in a series of experiments. In Experiment 1, chemical composition and in situ dry matter disappearance (DMD) of six varieties of wheat were determined. In addition, an in vitro study was completed using ground micronized and unmicronized wheat (var. Kansas). In Experiment 2, three varieties of wheat (Kansas, Sceptre and Laura) and in Experiment 3, three cereal grains (wheat, barley and corn) were either micronized for 1 min to attain internal kernel temperatures of 90-100$^{\circ}C$ or not (controls), and DM, protein and starch disappearances were estimated. In Experiment 2, an in vitro study was also completed using ground micronized and unmicronized wheat (var. Kansas). Wheat samples varied with respect to crude protein (10.0-21.2%), starch (61.6-73.9%), NDF (8.5-11.8%), volume weight (753-842 g/L) and kernel hardness (0.0-32.0). Rate (p = 0.003) and extent (p = 0.001) of in situ DMD differed among wheat varieties. Correlations between in situ kinetics, and chemical and physical properties of wheat varieties showed that protein content was negatively correlated with the rate of disappearance ($r^2$ = -0.77). Micronization of all grains markedly reduced (p = 0.001) the rate and extent of DM, and protein disappearances as compared to control samples. Micronization increased (p<0.05) the digestion of starch in wheat. However, release of ammonia into the incubation medium was markedly reduced (p<0.05), suggesting that micronization increased the resistance of protein to microbial digestion. Disappearances of DM, protein and starch differed (p = 0.001) among cereal grains with wheat>barley>corn. Micronization reduced the rate of DM disappearance (p = 0.011) and slowly degradable protein fractions (p = 0.03), however, increased (p = 0.004) slowly degradable starch fractions of all three cereals. Examination of in situ samples by scanning electron microscopy confirmed that microbial colonization focused on starch granules in micronized grains, and that the protein matrix exhibited resistance to microbial colonization. These results suggest that micronization may be used to increase the ruminal escape value of protein in cereal grains, but may lead to increased starch digestion if grains are finely ground.

EFFECTS OF ACTIVATED CARBON ON GROWTH, RUMINAL CHARACTERISTICS, BLOOD PROFILES AND FEED DIGESTIBILITY IN SHEEP

  • Garillo, E.P.;Pradhan, R.;Tobioka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제8권1호
    • /
    • pp.43-50
    • /
    • 1995
  • This study was carried out to investigate the effects of activated carbon (AC) on growth, ruminal charateristics, blood profiles and feed digestibility in sheep, using roughage-based or concentrate-based diets. Twelve Suffolk breed of sheep of similar age and weight were distributed into 4 groups in a $2{\times}2$ factorial design. Two groups were fed a roughage-based diet with (R + AC) and without AC (R - AC), while the other two were fed a concentrate-based diet with (C + AC) and without AC (C - AC), respectively. The addition of 0.3% AC was based on dry matter of feed offered to animals. The incorporation of AC in roughage and concentrate based diets had no marked effects on feed intake, daily gain and feed conversion of the animals within experimental diets. The results obtained might be due to the low level of AC added in the diet. The animal on both concentrate-based diets were higher than the roughage-based diets in terms of daily gain and feed conversion ratio. However, it was observed that the animals provided with AC in the concentrate-based diet did not suffer from diarrhea and easily adjusted to high concentrate feeding. Further, the pH value for all diets before feeding was noted to be similar. After feeding, however, pH was shown to be higher in R + AC (p < 0.05) than in C + AC diet. Rumen protozoa number was decreased after feeding for both + AC diets, but in C - AC diet it was higher than in the roughage-based diets. For ammonia-nitrogen, C - AC was found to be higher than C + AC diet and the roughage-based diets before feeding. Total volatile fatty acid concentration, propionate and valerate molar ratios for both diets and time of collection were not affected. However, acetate, butyrate and valerate molar ratios were observed to be affected by diets and time of collections. The diets with AC increased (p < 0.05) before feeding for acetate molar ratio, but not different within diet, however, the roughage diets were found to be higher (p < 0.05) in acetate than the concentrate diet. In the blood parameters, the glutamic pyruvic transaminase (GPT), red and white blood cell (RBC, WBC) counts and packed cell volume (PCV) did not differ within and among the diets. Likewise, the WBC differential count in both diets with either - AC or + AC were similar in trend. However, lymphocyte count was noted to be increased in R + AC than the R - AC diet. The addition of AC in both diets did not affect nutrient digestibilities within diets.

The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats - A Review

  • Sunagawa, Katsunori;Nagamine, Itsuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.159-169
    • /
    • 2016
  • The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of $NaHCO_3$ due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed.