• Title/Summary/Keyword: Rumen Metabolites

Search Result 74, Processing Time 0.021 seconds

Effects of Supplementing Brown Seaweed By-products in the Diet of Holstein Cows during Transition on Ruminal Fermentation, Growth Performance and Endocrine Responses

  • Hong, Z.S.;Kim, E.J.;Jin, Y.C.;Lee, J.S.;Choi, Y.J.;Lee, H.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1296-1302
    • /
    • 2015
  • This study was conducted to examine the effects of supplementing brown seaweed by-products (BSB) in the diet of ruminants on ruminal fermentation characteristics, growth performance, endocrine response, and milk production in Holstein cows. In Experiment 1, the effects of different levels (0%, 2%, and 4% of basal diet as Control, 2% BSB, 4% BSB, respectively) of BSB were evaluated at 3, 6, 9, 12, and 24 h in vitro batch culture rumen fermentation. The pH tended to be higher for the higher level of BSB supplementation, with the pH at 12 h being significantly higher (p<0.05) than that of the control. The concentration of ammonia nitrogen was lower at 3, 9, 12, and 24 h incubation (p<0.05) compared with the control, and tended to be low at other incubation times. Volatile fatty acid concentration appeared to be minimally changed while lower values were observed with 4% BSB treatment at 24 h (p<0.05). In Experiment 2, effects of levels (0%, 2%, and 4%) of BSB on growth performance, endocrine responses and milk production were studied with Holstein dairy cows during transition. Dry matter intake, daily gain and feed efficiency were not affected by BSB supplementation. The concentration of plasma estrogen for the control, 2% BSB and 4% BSB after three months of pregnancy were 55.7, 94.1, and 72.3 pg/mL, respectively (p = 0.08). Although the differences of progesterone levels between BSB treatments and the control were minimal, the concentration in 4% BSB treatment increased to 157.7% compared with the initial level of the study. Triiodothyronine and thyroxine levels were also higher after both three months and eight months of pregnancy than the initial level at the beginning of the study. In addition, BSB treatments during one month after delivery did not affect daily milk yield and composition. In conclusion, the present results indicate that supplementation of BSB did not compromise ruminal fermentation, and animal performance at lower levels and hence may have potential to be used as a safe feed ingredient in dairy cows.

Effects of Non-protein Energy Intake on Whole Body Protein Synthesis, Nitrogen Retention and Glucose Turnover in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.536-542
    • /
    • 2007
  • The responses of whole body protein and glucose kinetics and of nitrogen (N) metabolism to non-protein energy intake (NPEI) were determined using an isotope dilution approach and measurement of N balance in three adult male goats. The diets containing 1.0, 1.5 and 2.0 times ME maintenance requirement, with fixed intake of CP (1.5 times maintenance) and percentage of hay (33%), were fed twice daily for each 21 d experimental period. After an adaptation period of 11 d, N balance was determined over 3 d. On day 17, whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were determined during the absorptive state by a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine, [$^2H_4$]tyrosine and [$^{13}C_6$]glucose, with simultaneous measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also measured at 6 h after feeding over 3 d. Nitrogen retention tended to increase (p<0.10) with increasing NPEI, although digestible N decreased linearly (p<0.05). Increasing NPEI decreased (p<0.01) ammonia N concentration, but increased acetate (p<0.05) and propionate (p<0.05) concentrations in the rumen. Despite decreased plasma urea N concentration (p<0.01), increased plasma tyrosine concentration (p<0.05), and trends toward increased plasma total amino N (p<0.10) and phenylalanine concentrations (p<0.10) were found in response to increasing NPEI. Increasing NPEI increased ILR of both glucose (p<0.01) and phenylalanine (p<0.05), but did not affect ($p{\geq}0.10$) that of tyrosine. Whole body protein synthesis increased (p<0.05) in response to increasing NPEI, resulting from increased utilization rate for protein synthesis (p<0.05) and unchanged hydroxylation rate of phenylalanine ($p{\geq}0.10$). These results suggest that increasing NPEI may enhance WBPS and glucose turnover at the absorptive state and improve the efficiency of digestible N retention in goats, with possibly decreased ammonia and increased amino acid absorption. In addition, simultaneous increases in WBPS and glucose ILR suggest stimulatory effect of glucose availability on WBPS, especially when sufficient amino acid is supplied.

Effects of Level and Degradability of Dietary Protein on Ruminal Fermentation and Concentrations of Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Hanwoo Steers

  • Oh, Young-Kyoon;Kim, Jeong-Hoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Kang, Su-Won;Nam, In-Sik;Kim, Do-Hyung;Song, Man-Kang;Kim, Chang-Won;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.392-403
    • /
    • 2008
  • Four ruminally fistulated Hanwoo steers were used to determine the effects of level and degradability of dietary protein on ruminal fermentation, blood metabolites and concentration of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). Experiments were conducted in a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments. Factors were protein supplements with two ruminal crude protein (CP) degradabilities, corn gluten meal (CGM) that was low in degradability (rumen-degraded protein (RDP), 23.4% CP) or soybean meal (SBM) that was high in degradability (RDP, 62.1% CP), and two feeding levels of CP (12.2 or 15.9% dry matter). Ruminal fermentation rates and plasma metabolite concentrations were determined from the RD collected at 2-h intervals and from the blood taken by jugular puncture, respectively. The SNAN fractions (free amino acid, peptide and soluble protein) in RD and OD collected at 2-h intervals were assessed by ninhydrin assay. Mean ruminal ammonia concentrations were 40.5, 74.8, 103.4 and 127.0 mg/L for low CGM, high CGM, low SBM and high SBM, respectively, with statistically significant differences (p<0.01 for CP level and p<0.001 for CP degradability). Blood urea nitrogen concentrations were increased by high CP level (p<0.001) but unaffected by CP degradability. There was a significant (p<0.05) interaction between level and degradability of CP on blood albumin concentrations. Albumin was decreased to a greater extent by increasing degradability of low CP diets (0.26 g/dl) compared with high CP diets (0.02 g/dl). Concentrations of each SNAN fraction in RD (p<0.01) and OD (p<0.05) for high CP diets were higher than those for low CP diets, except for peptides but concentrations of the sum of peptide and free amino acid in RD and OD were significantly higher (p<0.05) for high CP diets than for low CP diets. Soybean meal diets increased free amino acid and peptide concentrations in both RD (p<0.01) and OD (p<0.05) compared to CGM diets. High level and greater degradability of CP increased (p<0.001) mean concentrations of total SNAN in RD and OD. These results suggest that RDP contents, increased by higher level and degradability of dietary protein, may increase release of free amino acids, peptides and soluble proteins in the rumen and omasum from ruminal degradation and solubilization of dietary proteins. Because SNAN in OD indicates the terminal product of ruminal metabolism, increasing CP level and degradability appears to increase the amount of intestine-available nitrogen in the liquid phase.

Effects of Chromium Picolinate on Growth Performance, Carcass Characteristics and Plasma Components in Holstein Bulls (홀스타인 수소에 있어서 Chromium Picolinate의 첨가가 성장성적, 혈액성상 및 도체품질에 미치는 영향)

  • Hong, Z.S.;Jin, M.G.;Jin, R.H.;Han, S.Y.;Lee, H.G.;Lee, H.J.;Choi, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.419-426
    • /
    • 2002
  • We conducted two experiments to evaluate the effects of chromium picolinate(CrP) on growth performance, carcass characteristics and plasma components in Holstein bulls. In trial Ⅰ, eight finishing Holstein bulls(300${\pm}$6.99Kg) were allocated to 2 treatments(control and 0.05% CrP) with 4 replication for 10-months. In results, growth performance was not affected by CrP addition. The plasma insulin concentration in 0.05% CrP group was about 2 times higher than the control group of Holstein bulls. The levels of plasma NEFA were significantly decreased to 59.00 mEq/dl with 0.05% CrP treatment(P<0.05), but the levels of plasma glucose and PUN were not altered by 0.05% CrP treatment. The grade of carcass was not different between control and 0.05% CrP group, but back fat thickness in 0.05% CrP group was increased in 22.33% compared with control group. In trial 2, fifteen growing- finishing Holstein bulls(160${\pm}$4.63Kg) were allocated to 3 treatments(control, 0.025% CrP and 0.05% CrP) with 5 replication for 14-months. During the overall experimental period, growth performance was not affected by CrP levels. The levels of hormone and metabolites were not affected by CrP supplementa- tion. The carcass characteristics were not different between control and treatment. These results show that the CrP may have no effects for beef cattle production because of degradation of CrP conjugation in the rumen. However treatment of short term provide a possibility the effects of development for lipogenesis.