• Title/Summary/Keyword: Rumen Condition

Search Result 43, Processing Time 0.021 seconds

Determination of Optimum Fermentation Condition for Alcohol-Fermented Feeds with Wet Brewer's Grains (맥주박을 이용한 알코올 발효사료의 최적 발효조건 규명)

  • Kim, C.H.;Park, B.K.;Ohh, S.J.;Sung, K.I.;Kim, H.S.;Hong, B.J.;Shin, J.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.607-614
    • /
    • 2005
  • To determine the optimum fermentation condition, the 50:50 feed mixture of both crushed corn and wet brewer’s grain were anaerobically fermented at various conditions. Three supplementation levels(0, 2%, and 5%) of molasses, five supplementation levels(0, 0.1%, 0.5%, 1.0%, and 2.0%) of yeast and five different incubation temperatures(4$^{\circ}C$, 10$^{\circ}C$, 30$^{\circ}C$, 40$^{\circ}C$ and 50$^{\circ}C$) were tested to determine the optimum fermentation conditions. During fermentation, alcohol concentration, live yeast cell number (LYCN) and pH values of the mixture were analyzed. Alcohol concentrations of the fermented feed mixtures were proportionally increased with increasing level of molasses supplementation. After 24hr fermentation, alcohol concentrations at 0.1%, 0.5%, 1.0% and 2.0% of yeast supplementation was 1.9%, 2.4%, 3.1% and 3.1%, respectively. These results indicate a proportional increase of alcohol concentration with the increasing supplementation of yeast (P<0.05) up to 1%, thereafter showing plateau at 2% supplementation. LYCN was relatively high with more than 0.5% yeast supplementation, whereas the value was significantly low(P<0.05) at 0.1% yeast supplementation. Alcohol production was significantly higher at 30$^{\circ}C$ and 40$^{\circ}C$ than other incubation temperatures (P<0.05), with the highest concentration at 30$^{\circ}C$. pH was rapidly decreased until 24 hours of incubation with steeper decrease at lower temperatures(P<0.05). Based on there results, optimum fermentation conditions for the alcoholic-fermented feed production could be achieved with 5% supplementation of molasses, 1% supplementation of yeast, and 24hr long incubation at 30$^{\circ}C$.

Effects of Supplementing Aqueous Direct-Fed Microbials on In Vitro Fermentation and Fibrolytic Enzyme Activity in the Ruminant Nutrition (반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향)

  • Lee, S.H.;Seo, I.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.789-804
    • /
    • 2005
  • This study was conducted to determine effects of supplementation levels of aqueous direct-fed microbials (DFM; Bacillus spp.) to TMR(exp. 1.) and aqueous DFM addition under the various ratios of starch and cellulose(exp. 2.) on ruminal fermentation and fibrolytic enzyme activity. In experiment 1, ruminal fluids taken from rumen-cannulated Holstein cows were incubated during 24 hr by using TMR as substrates. Aqueous DFM was applied at a rate of 0, 0.025 and 0.05%, respectively. The pH of 0.025% treatment was not significantly different from that of control at 6 and 9 hr, but it was significantly lower (P<0.05) than 0.05% treatment. Concentrations of ammonia-N and VFAs were not affected by supplementing aqueous DFM. The A:P ratio of 0.05% treatment was significantly increased(P<0.05) by supplementation of aqueous DFM as compared with that of control at 24 hr. Although overall fibrolytic enzyme activities were not significantly affected by supplementing aqueous DFM, CMCase(carboxymethylcellulase) activity showed significant increase(P<0.05) compared to control at 6hr. However, the xylanase activity of 0.05% treatment significantly decreased(P<0.05) at 12 hr due to the application of aqueous DFM. There was no significant difference for in vitro dry matter disappearance among treatments. In experiment 2, ruminal fluids were incubated under the condition of various ratios of starch to cellulose(90:10, 70:30, 50:50, 30:70 and 10:90) with or without aqueous DFM(0.025%). Ruminal pH was unaffected by the addition of aqueous DFM, however, as increased level of starch, ruminal pH partially showed significant decrease(P<0.05). Ammonia-N concentration was not affected by aqueous DFM and ratio of starch and cellulose. On 9 hr incubation, DFM addition at a ratio of 70:30 showed significantly (P<0.05) lower value of ammonia-N(35.65 mg/dL) than that(65.05 mg/dL) of control. Concentrations of VFAs were significantly increased(P<0.05) by aqueous DFM addition compared with control at the same ratio on 6 hr incubation. The overall CMCase activity was not affected by aqueous DFM addition. However, the xylanase activity by aqueous DFM partially showed significant differences at the ratios of 90:10, 30:70 and 10:90. Our results indicated that supplementation of aqueous DFM did not significantly improve in vitro fermentation and fibrolytic enzyme activity. In addition, the DFM utilized in this study did not show consistent results by having various effects on ruminal fermentation under different feeding regimens.

Effect of Pine Silage Feeding on Nutrient Digestibility, Feed Conversion and Carcass Traits of Korean Native Cattle (잣나무 生枝葉사일리지 급여가 한우의 영양소 소화율, 사료요구율 및 도체성적에 미치는 영향)

  • 오영균;정찬성;이상철;김경훈;최창원;강수원;문여황
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.219-226
    • /
    • 2006
  • The wastes (the needle leaves and branches) produced from thinning the forest were fermented under an anaerobic condition (pine silage) to utilize as a forage source of ruminants. An in situ trial was conducted with two ruminally fistulated Korean native cows by 4 replicates (2 bags per cow), and in vivo digestibility of pine silage was estimated with five Korean native steers by 5 replicates in incomplete double turn-over design. In order to investigate feed efficiency and carcass traits, forty eight Korean native bulls were assigned to four treatments (0%, 25%, 50%, 75% of pine silage) with a completely randomized design in 12 pens accommodating 4 animals per pen. The amounts of concentrate and roughage allowed to experimental animals were in the range of 2.5% and 0.6% of body weight, respectively. Animals had freely accessed to mineral block and water in stanchion barn.An in situ crude protein digestibility of the roughage sources when suspended for 48 hrs in the rumen was higher for feeding the pine silage than the rice straw, whereas NDF digestibility was vice versa. No differences between the treatments were observed in in vivo digestibilities of dry matter, crude protein and NDF. Daily body weight gain was significantly (P<0.01) higher for the pine silage substitutions compared with the rice straw feeding except for the 25% silage feeding. The pine silage feeding did not affect feed efficiency.In carcass traits, marbling score tended to be higher for the 50% pine silage treatment than the other treatments while back fat thickness tended to be the thinnest for the rice straw feeding. From these results, it may be recommended to substitute pine silage, as a forage source, for rice straw by 50 percent.