• Title/Summary/Keyword: RuleML

Search Result 46, Processing Time 0.02 seconds

ML Frame Synchronization for Gaussian Channel with Co-channel Interference (가우스 잡음과 CO-CHANNEL 간섭이 존재하는 채널에서의 최대추정 프레임 동기)

  • 문병현;우홍체;김신환;이채욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.643-649
    • /
    • 1993
  • The problem of locating a periodically inserted frame synchronization pattern in random data for a binary pulse amplitude modulated (PAM) digital communication system over a additive white Gaussian noise(AWGN) channel with co-channel interference is considered. The performance degradation of frame synchronization for the correlation rule due to the presence of co-channel interference is shown. The maximum likelihood(ML) decision rule for the frame synchronization over an AWGN channel with co-channel interference is derived. For the entire range of SNR considered, the ML frame synchronization rule obtains about 1dB signal energy gain over the correlation rule. Specially, the ML rule obtains as much as 2dB gain over the correlation rule when the SNR is greater than 0dB.

  • PDF

Lightweight Named Entity Extraction for Korean Short Message Service Text

  • Seon, Choong-Nyoung;Yoo, Jin-Hwan;Kim, Hark-Soo;Kim, Ji-Hwan;Seo, Jung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.560-574
    • /
    • 2011
  • In this paper, we propose a hybrid method of Machine Learning (ML) algorithm and a rule-based algorithm to implement a lightweight Named Entity (NE) extraction system for Korean SMS text. NE extraction from Korean SMS text is a challenging theme due to the resource limitation on a mobile phone, corruptions in input text, need for extension to include personal information stored in a mobile phone, and sparsity of training data. The proposed hybrid method retaining the advantages of statistical ML and rule-based algorithms provides fully-automated procedures for the combination of ML approaches and their correction rules using a threshold-based soft decision function. The proposed method is applied to Korean SMS texts to extract person's names as well as location names which are key information in personal appointment management system. Our proposed system achieved 80.53% in F-measure in this domain, superior to those of the conventional ML approaches.

Integration of OWL and SWRL Inference using Jess (Jess를 이용한 OWL과 SWRL의 통합추론에 관한 연구)

  • Lee Ki-Chul;Lee Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.875-880
    • /
    • 2005
  • OWL(Web Ontology Language) is the Ontology Standard Language and the a lot of Ontologies are being constructed in OWL. But the research on the extension of OWL is also progressing because of the limit of representation power of in OWL language. The W3C suggests the SWRL(Semantic Web Rule Language) based on the combination of OWL and RuleML(Rule Markup Language), which is improved in the representation of rule. Thus, both OWL and SWRL are used for developing ontologies. However, research on inference of ontologies written in both languages is just begun. These day, for the inference of ontologies written in both languages, ontologies and divided in to two parts. The part written in OWL and written in SWRL. For the inference of the part written in OWL, Racer, a DL based inference engine, is used and for the other part Jess, a rule-based engine, is used. In this paper, we will propose three methods for integrated inference of the OWL part and the SWRL part of ontologies using Jess and some tools for ontology inference : OWLJessKB and SWRL Factory

Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior (지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.86-99
    • /
    • 2011
  • Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.

Development of an SWRL-based Backward Chaining Inference Engine SMART-B for the Next Generation Web (차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B의 개발)

  • Song Yong-Uk;Hong June-Seok;Kim Woo-Ju;Lee Sung-Kyu;Youn Suk-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • While the existing Web focuses on the interface with human users based on HTML, the next generation Web will focus on the interaction among software agents by using XML and XML-based standards and technologies. The inference engine, which will serve as brains of software agents in the next generation Web, should thoroughly understand the Semantic Web, the standard language of the next generation Web. As abasis for the service, the W3C (World Wide Web Consortium) has recommended SWRL (Semantic Web Rule Language) which had been made by compounding OWL (Web Ontology Language) and RuleML (Rule Markup Language). In this research, we develop a backward chaining inference engine SMART-B (SeMantic web Agent Reasoning Tools -Backward chaining inference engine), which uses SWRL and OWL to represent rules and facts respectively. We analyze the requirements for the SWRL-based backward chaining inference and design analgorithm for the backward chaining inference which reflects the traditional backward chaining inference algorithm and the requirements of the next generation Semantic Web. We also implement the backward chaining inference engine and the administrative tools for fact and rule bases into Java components to insure the independence and portability among different platforms under the environment of Ubiquitous Computing.

  • PDF

The Effect of Knowledge Acquisition through OntoRule: XRML Approach (온톨로지를 활용한 자동화된 지식 습득 방법론 및 효과 분석)

  • Park, Sang-Un;Lee, Jae-Kyu;Kang, Ju-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.151-173
    • /
    • 2005
  • We developed a methodology of rule acquisition from texts such as Web pages which utilizes ontology in identification of rule components. We expect that the proposed methodology can reduce the bottleneck of rule acquisition and contribute to the utilization of rule based systems. As parts of our research, we designed an ontology for rule acquisition named OntoRule and proposed a rule acquisition methodology through OntoXRML which is an acquisition tool using OntoRule. Also, we evaluated our approach by calculating missed recommendations and wrong recommendations of rule components in rule acquisition experiments over three online bookstores.

  • PDF

온톨로지를 활용한 자동화될 규칙 습득 방법론 및 효과 분석

  • Park, Sang-Eon;Lee, Jae-Gyu;Gang, Ju-Yeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-330
    • /
    • 2005
  • 시맨틱 웹 관련연구가 증가함에 따라 지능형 에이전트 혹은 규칙기반 시스템 등의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 그러나 규칙기반 시스템의 활용에는 아직도 규칙습득이 많은 제약이 되고 있다. 이와 같은 제약을 극복하기 위해 웹 페이지로부터 규칙을 습득하기 위한 XRML 방법론이 제안되었다. XRML 방법론은 웹 페이지로부터 규칙을 식별하고 식별된 결과로부터 자동으로 규칙을 생성하는 두 단계로 구성되어 있다. 여기서 규칙의 식별은 규칙생성의 자동화 정도에 매우 중요한 영향을 미친다. 그러나 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의존하고 있다. 이러한 지식관리자의 부담을 줄이기 위해 본 논문에서는 온톨로지 기반의 개선된 규칙식별 방법론을 제안하고자 한다. 이를 위해 먼저 OntoRule이라는 이름의 온톨로지를 설계하였다. OntoRule은 자동화된 규칙 식별을 지원하기 위해 사용되며, 규칙의 구성요소들과 구조에 대한 정보를 포함하고 있다. 그리고 OntoRule을 이용하여 규칙을 식별하는 절하를 제안하였다. OntoRule과 규칙식별 절차를 제안하는 과정에서 온톨로지 학습효과, 하향식 접근방식과 상향식 접근방식의 차이, 온톨로지 적용범위 관리, 규칙 구성요소의 식별순서, 생략된 별수의 식별과 같은 놈점들이 고려되었다. 마지막으로 실험을 통해 제안된 방법론의 효과를 보였다.

  • PDF

차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B 의 개발

  • Song, Yong-Uk;Hong, Jun-Seok;Kim, U-Ju;Lee, Seong-Gyu;Yun, Suk-Hui
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.488-496
    • /
    • 2005
  • 현재의 웹이 HTML을 바탕으로 인간 사용자와의 인터페이스에 초점을 맞추고 있는데 비하여, 차세대 웹은 XML 및 XML 기반 각종 표준들을 바탕으로 소프트웨어 에이전트와의 인터페이스에 초점을 맞추어 나가고 있다. 차세대 웹에서 소프트웨어 에이전트의 두뇌 역할을 수행하기 위하여 추론엔진은 차세대 웹의 표준 언어인 시맨틱 웹(Semantic Web)을 충실히 이해할 수 있어야 한다. 이를 위한 기초 작업의 일환으로 OWL(Web Ontology Language)과 RuleML(Rule Markup Language)이 W3C에 제안된 바 있다. 본 연구에서는 SWRL을 규칙 표현 방법으로 사용하고, OWL을 사실 표현 방법으로 사용하는 역방향 추론엔진인 SMART-B(SeMantic web Agent Reasoning Tools - Backward chaining inference engine)을 개발하고자 한다. 이를 위하여 SWRL 기반 역방향 추론을 위한 요구 기능을 분석하고, 기존 역방향 추론 알고리즘에 차세대 시맨틱 웹을 요구 기능을 반영한 역방향 추론 알고리즘을 설계하였다. 또한, 유비쿼터스 환경에서의 각종 플랫폼의 독립성과 이식성을 확보하고 기기 간의 성능 차이를 극복할 수 있도록 사실 베이스 및 규칙 베이스의 관리도구와 역방향 추론 엔진 등을 Java 프로그래밍 언어를 이용하여 단위 컴포넌트의 형태로 개발 중에 있다.

  • PDF

그래프 탐색을 이용한 웹으로부터의 온톨로지 기반 규칙습득

  • Park Sang-Eon;Lee Jae-Gyu;Gang Ju-Yeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.245-254
    • /
    • 2006
  • 지능형 에이전트와 규칙기반 시스템을 이용해 보다 지능적안 웹 환경을 구축하고자 하는 노력이 시맨틱 웹의 발전과 함께 증가하고 있다. 이러한 에이전트와 규칙기반 시스템에 필요한 규칙들을 이미 많은 지식들이 산재해 있는 웹으로부터 습득 할 수 있다면 보다 효율적으로 시스템을을 구축하는 것이 가능하며, 이러한 응용시스템의 확장은 시맨틱 웹의 발전을 더욱 가속화하는 계기가 될 수 있을 것이다. XRML 방법론은 웹으로부터 규칙을 습득하기 위한 단계적 방법을 제시하고 있으며, 온톨로지를 이용함으로써 규칙의 구성 요소들을 자동으로 추출할 수 있도록 지원한다. 그러나 추출된 규칙구성요소들을 조합하여 완전한 규칙을 만드는 과정이 규칙관리자의 수작업에 의존하고 있다. 본 연구는 온톨로지와 그래프 탐색 을 사용함으로써 이과정을 자동화하고자 하는 연구이다. 온톨로지에 있는 규칙의 일반적 패턴을 기반으로 하여 그래프 탐색을 이용해 규칙구성요소들을 조합함으로써 웹 페이지로부터 자동으로 규칙을 추출할 수 있다.

  • PDF

Analysis of Semantic Web Based Rules Using Automatic Reasoning (자동 추론을 이용한 시맨틱 웹기반의 Rules 분석)

  • 양종원;이상용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.643-645
    • /
    • 2004
  • 최근 시맨틱 웹에 대한 중요성이 부각되면서 다양한 분야에서 이와 관련된 연구가 활발하게 이루어지고 있다. 시맨틱 웹 기술의 구성은 크게 RDF와 단일화된 데이터모델, 그 위에 규정 되어지는 DAML+OIL(OWL)과 같은 의미를 표현할 수 있는 언어, 웹 자원들을 나타내기 위한 표준화된 용어 규정의 온톨로지, 그리고 그러한 의미적인 것들의 생성과 처리를 지원하는 툴로 이루어졌다. 시맨틱 웹에서 현재 온톨로지에 대한 연구와 사례들은 많이 연구가 되고 있지만 시맨틱 웹기반에서 Rules에 대한 연구는 미약하다. 본 논문에서는 Rules을 운용함에 있어서 기존의 자동 추론 방식을 통해 개발되고 있는 RuleML을 분석하고 향후 이기종간의 Rules에서의 상호운용성을 높여 시스템간의 지식을 공유하는 방법을 분석한다.

  • PDF