• Title/Summary/Keyword: Rule-based Systems

Search Result 1,056, Processing Time 0.029 seconds

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.

A Study for BIM based Evaluation and Process for Architectural Design Competition -Case Study of Domestic and International BIM-based Competition (BIM기반의 건축설계경기 평가 및 절차에 관한 연구 -국내외 BIM기반 건축설계경기 사례를 기반으로-)

  • Park, Seung-Hwa;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.23-30
    • /
    • 2017
  • In the AEC(Architecture, Engineering and Construction) industry, BIM(Building Information Modeling) technology not only helps design intent efficiently, but also realizes an object-oriented design including building's life cycle information. Thus it can manage all data created in each building stage and the roles of BIM are greatly expanded. Contractors and designers have been trying to adopt BIM to design competitions and validate it for the best result in various aspects. Via the computational simulation which differs from the existing process, effective evaluation can be done. For this process, a modeling guideline for each kind of BIM tool and a validation system for the confidential assessment are required. This paper explains a new process about design evaluation methods and process using BIM technologies which follow the new paradigm in construction industry through complement points by an example of a competition activity of the Korea Power Exchange(KPX) headquarter office. In conclusion, this paper provides a basic data input guideline based on open BIM for automatic assessment and interoperability between different BIM systems and suggests a practical usage of the rule-based Model Checker.

A Unified Design Methodology using UML Classes for XML Application based on RDB (관계형 데이터베이스 기반의 XML 응용을 위한, UML 클래스를 이용한 통합 설계 방법론)

  • Bang, Sung-Yoon;Joo, Kyung-Soo
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1105-1112
    • /
    • 2002
  • Nowadays the information exchange based on XML such as B2B electronic commerce is spreading. Therefore a systematic and stable management mechanism for storing the exchanged information is needed. For this goal there are many research activities for concerning the connection between XML application and relational databases. But because XML data has hierarchical structure and relational databases can store only flat-structured data, we need to make a conversion rule which changes the hierarchical architecture to a 2-dimensional format. Accordingly the modeling methodology for storing such structured information in relational databases is needed. In order to build good quality application systems, modeling is an important first step. In 1997, the OMG adopted the UML as its standard modeling language. Since industry has warmly embraced UML, its popularity should become more important in the future. So a design methodology based on UML is needed to develop efficient XML applications. In this paper, we propose a unified design methodology for XML applications based on relational database using UML. To reach these goals, first we introduce a XML modeling methodology to design W3C XML schema using UML and second we propose data modeling methodology for relational database schema to store XML data efficiently in relational databases.

Improving the Classification of Population and Housing Census with AI: An Industry and Job Code Study

  • Byung-Il Yun;Dahye Kim;Young-Jin Kim;Medard Edmund Mswahili;Young-Seob Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, we propose an AI-based system for automatically classifying industry and occupation codes in the population census. The accurate classification of industry and occupation codes is crucial for informing policy decisions, allocating resources, and conducting research. However, this task has traditionally been performed by human coders, which is time-consuming, resource-intensive, and prone to errors. Our system represents a significant improvement over the existing rule-based system used by the statistics agency, which relies on user-entered data for code classification. In this paper, we trained and evaluated several models, and developed an ensemble model that achieved an 86.76% match accuracy in industry and 81.84% in occupation, outperforming the best individual model. Additionally, we propose process improvement work based on the classification probability results of the model. Our proposed method utilizes an ensemble model that combines transfer learning techniques with pre-trained models. In this paper, we demonstrate the potential for AI-based systems to improve the accuracy and efficiency of population census data classification. By automating this process with AI, we can achieve more accurate and consistent results while reducing the workload on agency staff.

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.

Evolution of Aviation Safety Regulations to cope with the concept of data-driven rulemaking - Safety Management System & Fatigue Risk Management System

  • Lee, Gun-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.345-366
    • /
    • 2018
  • Article 37 of the International Convention on Civil Aviation requires that rules should be adopted to keep in compliance with international standards and recommended practices established by ICAO. As SARPs are revised annually, each ICAO Member State needs to reflect the new content in its national aviation Acts in a timely manner. In recent years, data-driven international standards have been developed because of the important roles of aviation safety data and information-based legislation in accident prevention based on human factors. The Safety Management System and crew Fatigue Risk Management Systems were reviewed as examples of the result of data-driven rulemaking. The safety management system was adopted in 2013 with the introduction of Annex 19 and Chapter 5 of the relevant manual describes safety data collection and analysis systems. Through analysis of safety data and information, decision makers can make informed data-driven decisions. The Republic of Korea introduced Safety Management System in accordance with Article 58 of the Aviation Safety Act for all airlines, maintenance companies, and airport corporations. To support the SMS, both mandatory reporting and voluntary safety reporting systems need to be in place. Up until now, the standard of administrative penal dispensation for violations of the safety management system has been very weak. Various regulations have been developed and implemented in the United States and Europe for the proper legislation of the safety management system. In the wake of the crash of the Colgan aircraft, the US Aviation Safety Committee recommended the US Federal Aviation Administration to establish a system that can identify and manage pilot fatigue hazards. In 2010, a notice of proposed rulemaking was issued by the Federal Aviation Administration and in 2011, the final rule was passed. The legislation was applied to help differentiate risk based on flight according to factors such as the pilot's duty starting time, the availability of the auxiliary crew, and the class of the rest facility. Numerous amounts data and information were analyzed during the rulemaking process, and reflected in the resultant regulations. A cost-benefit analysis, based on the data of the previous 10 year period, was conducted before the final legislation was reached and it was concluded that the cost benefits are positive. The Republic of Korea also currently has a clause on aviation safety legislation related to crew fatigue risk, where an airline can choose either to conform to the traditional flight time limitation standard or fatigue risk management system. In the United States, specifically for the purpose of data-driven rulemaking, the Airline Rulemaking Committee was formed, and operates in this capacity. Considering the advantageous results of the ARC in the US, and the D4S in Europe, this is a system that should definitely be introduced in Korea as well. A cost-benefit analysis is necessary, and can serve to strengthen the resulting legislation. In order to improve the effectiveness of data-based legislation, it is necessary to have reinforcement of experts and through them prepare a more detailed checklist of relevant variables.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Development of Intelligent Internet Shopping Mall Supporting Tool Based on Software Agents and Knowledge Discovery Technology (소프트웨어 에이전트 및 지식탐사기술 기반 지능형 인터넷 쇼핑몰 지원도구의 개발)

  • 김재경;김우주;조윤호;김제란
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.153-177
    • /
    • 2001
  • Nowadays, product recommendation is one of the important issues regarding both CRM and Internet shopping mall. Generally, a recommendation system tracks past actions of a group of users to make a recommendation to individual members of the group. The computer-mediated marketing and commerce have grown rapidly and thereby automatic recommendation methodologies have got great attentions. But the researches and commercial tools for product recommendation so far, still have many aspects that merit further considerations. To supplement those aspects, we devise a recommendation methodology by which we can get further recommendation effectiveness when applied to Internet shopping mall. The suggested methodology is based on web log information, product taxonomy, association rule mining, and decision tree learning. To implement this we also design and intelligent Internet shopping mall support system based on agent technology and develop it as a prototype system. We applied this methodology and the prototype system to a leading Korean Internet shopping mall and provide some experimental results. Through the experiment, we found that the suggested methodology can perform recommendation tasks both effectively and efficiently in real world problems. Its systematic validity issues are also discussed.

  • PDF

Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery (회전익 UAS 영상기반 고밀도 측점자료의 위치 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • Lately, Unmanned Aerial Vehicles(UAV), Unmanned Aerial Systems(UAS) or also often known as drones, as a data acquisition platform and as a measurement instrument are becoming attractive for many photogrammetric surveying applications, especially generation of the high density point clouds(HDPC). This paper presents the performance evaluation of a low-cost rotary wing quadrocopter UAS for generation of the HDPC in a test bed environment. Its performance was assessed by comparing the coordinates of UAS based HDPC to the results of Network RTK GNSS surveying with 62 ground check points. The results indicate that the position RMSE of the check points are ${\sigma}_H={\pm}0.102m$ in Horizonatal plane, and ${\sigma}_V={\pm}0.209m$ in vertical, and the maxium deviation of Elevation was 0.570m within block area of ortho-photo mosaic. Therefore the required level of accuracy at NGII for production of ortho-images mosaic at a scale of 1:1000 was reached, UAS based imagery was found to make use of it to update scale 1:1000 map. And also, since this results are less than or equal to the required level in working rule agreement for airborne laser scanning surveying of NGII for Digital Elevation Model generation of grids $1m{\times}1m$ and 1:1000 scale, could be applied with production of topographic map and ortho-image mosaic at a scale of 1:1000~1:2500 over small-scale areas.

A Knowledge-assisted Hybrid System for effectively Supporting Personalization of a Web Customer (웹 고객의 개인화를 지원하는 지식기반 통합시스템)

  • Kim, Chul-Soo
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Many customers consult the Internet before making purchase goods and using contents. The systems in the Internet could store a lot of data and classify the data into information to get relationship between a company and customers. To do that, let's consider a knowledge-assisted hybrid system that utilizes individually a customer's preference to make an optimal solution in the his/her decision making. The knowledge made by using the preference is employed to select an domain set appropriate to him/her business, and the process of selecting definitely provides the customer some benefits: elimination of discomfort from unknown information and reduction of costs and search time for forming an suitable domain set. To effectively adopt individual customer's preference and actively adapt change of business situation, this study propose an architecture of the system which includes rule presentations and an inference engine, and integrates a knowledge-based component into a quadratic programming component. In the experimental results, it is found that a knowledge-assisted hybrid system implemented by this idea is more flexible than existing systems in extension of knowledge about an customer's preference and goes beyond the traditional models.