• Title/Summary/Keyword: Rule-based Agent Modeling

Search Result 12, Processing Time 0.013 seconds

Performance Analysis of Error Recovery System on Distributed Multimedia Environment (분산 멀티미디어 환경에서 실행되는 오류 복구 시스템의 성능 분석)

  • Ko Eung-Nam
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.85-88
    • /
    • 2005
  • The requirement of distributed multimedia applications is the need for sophisticated QoS(quality of service) management. In terms of distributed multimedia systems, the most important catagories for quality of service are a timeless, volume, and reliability. In this paper, we discuss a method for increasing reliability through fault tolerance. We describe the desist and implementation of the ERA running on distributed multimedia environment ERA is a system is able to recover automatically a software error based on distributed multimedia. This paper explains a performance analysis of an error recovery system running on distributed multimedia environment using the rule-based DEVS modeling and simulation techniques. In DEVS, a system has a time base, inputs, states, outputs, and functions.

  • PDF

Modeling Virtual Ecosystems that Consist of Artificial Organisms and Their Environment (인공생명체와 그들을 둘러싸는 환경으로 구성 되어지는 가상생태계 모델링)

  • Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2010
  • This paper introduces the concept of a virtual ecosystem and reports the following three mathematical approaches that could be widely used to construct such an ecosystem, along with examples: (1) a molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm growth. The ecosystem considered in this study consists of artificial organisms and their environment. Each organism in the ecosystem is an agent that interacts autonomously with the dynamic environment, including the other organisms within it. The three types of model were successful to account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual ecosystem needs to take many ecological variables into account. However, doing so is likely to introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem's dynamics. Nonetheless, the development of a virtual ecosystem is important, because it can provide possible explanations for various phenomena such as environmental disturbances and disasters, and can also give insights into ecological functions from an individual to a community level from a synthetic viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper also briefly discusses the application of the second model to the simulation of a termite ecosystem and the influence of climate change on the termite ecosystem.