• Title/Summary/Keyword: Rule-Based Inventory Planning

Search Result 3, Processing Time 0.015 seconds

On Rule-Based Inventory Planning Over New Product Launching Period (신제품 출시 시점의 규칙기반 재고계획에 관한 고찰)

  • Kim, Hyoungtae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.170-179
    • /
    • 2016
  • In this paper we have tackled the outstanding inventory planning problems over new product launching period in a more holistic manner by addressing first the definition of efficient business rules to effectively control and reduce the inventory risks followed by the rigorous explanations on the implementation guide on suggested inventory planning rules. It is not unusual for many companies in the consumer electronics market to make a great effort to reduce the time to launch a new product because the ability to bring out higher performing products in such a short time period greatly increases the probability for them to remain competitive in the high tech market. Among so many newly developed products, those products with new features and technologies appeal to many potential customers while products which fail to win customers by design and prices rapidly disappear in the market. To adapt to this business environment, those companies have been trying to find the answer to minimize the inventory of old products so they can move to next generation products quickly with less obsolete material. In the experimental implementation of our rule-based inventory planning, Company 'S' reduced the inventory cost for the outgoing products as low as 49% of its peak level of its preceding product version in just 5 month after the adoption of rule-based inventory planning process and system. This paper concluded the subject with a suggestion that the best performance of rule-based inventory planning is guaranteed not from one-time campaign of process improvement along with system development but the decision maker's continuing support and attention even without seeing any upcoming business crisis.

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.

Shifts of Geographic Distribution of Pinus koraiensis Based on Climate Change Scenarios and GARP Model (GARP 모형과 기후변화 시나리오에 따른 잣나무의 지리적 분포 변화)

  • Chun, Jung Hwa;Lee, Chang Bae;Yoo, So Min
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.348-357
    • /
    • 2015
  • The main purpose of this study is to understand the potential geographic distribution of P. koraiensis, which is known to be one of major economic tree species, based on the RCP (Representative Concentration Pathway) 8.5 scenarios and current geographic distribution from National Forest Inventory(NFI) data using ecological niche modeling. P. koraiensis abundance data extracted from NFI were utilized to estimate current geographic distribution. Also, GARP (Genetic Algorithm for Rule-set Production) model, one of the ecological niche models, was applied to estimate potential geographic distribution and to project future changes. Environmental explanatory variables showing Area Under Curve (AUC) value bigger than 0.6 were selected and constructed into the final model by running the model for each of the 27 variables. The results of the model validation which was performed based on confusion matrix statistics, showed quite high suitability. Currently P. koraiensis is distributed widely from 300m to 1,200m in altitude and from south to north as a result of national greening project in 1970s although major populations are found in elevated and northern area. The results of this study were successful in showing the current distribution of P. koraiensis and projecting their future changes. Future model for P. koraiensis suggest large areas predicted under current climate conditions may be contracted by 2090s showing dramatic habitat loss. Considering the increasing status of atmospheric $CO_2$ and air temperature in Korea, P. koraiensis seems to experience the significant decrease of potential distribution range in the future. The final model in this study may be used to identify climate change impacts on distribution of P. koraiensis in Korea, and a deeper understanding of its correlation may be helpful when planning afforestation strategies.