• Title/Summary/Keyword: Rule based reasoning

Search Result 193, Processing Time 0.025 seconds

RBR Based Network Configuration Fault Management Algorithms using Agent Collaboration (에이전트들 간의 협력을 통한 RBR 기반의 네트워크 구성 장애 관리 알고리즘)

  • Jo, Gwang-Jong;An, Seong-Jin;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.497-504
    • /
    • 2002
  • This paper proposes fault diagnosis and correction algorithms using agent collaboration, and a management model for managing network configuration faults. This management model is composed of three processes-fault detection, fault diagnosis and fault correction. Each process, based on RBR, operates on using rules which are consisted in Rule-based Knowledge Database. Proposed algorithm selves the complex fault problem that a system could not work out by itself, using agent collaboration. And the algorithm does efficiently diagnose and correct network configuration faults in abnormal network states.

Reduction of Approximate Rule based on Probabilistic Rough sets (확률적 러프 집합에 기반한 근사 규칙의 간결화)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.203-210
    • /
    • 2001
  • These days data is being collected and accumulated in a wide variety of fields. Stored data itself is to be an information system which helps us to make decisions. An information system includes many kinds of necessary and unnecessary attribute. So many algorithms have been developed for finding useful patterns from the data and reasoning approximately new objects. We are interested in the simple and understandable rules that can represent useful patterns. In this paper we propose an algorithm which can reduce the information in the system to a minimum, based on a probabilistic rough set theory. The proposed algorithm uses a value that tolerates accuracy of classification. The tolerant value helps minimizing the necessary attribute which is needed to reason a new object by reducing conditional attributes. It has the advantage that it reduces the time of generalizing rules. We experiment a proposed algorithm with the IRIS data and Wisconsin Breast Cancer data. The experiment results show that this algorithm retrieves a small reduct, and minimizes the size of the rule under the tolerant classification rate.

  • PDF

Scalable RDFS Reasoning using Logic Programming Approach in a Single Machine (단일머신 환경에서의 논리적 프로그래밍 방식 기반 대용량 RDFS 추론 기법)

  • Jagvaral, Batselem;Kim, Jemin;Lee, Wan-Gon;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.762-773
    • /
    • 2014
  • As the web of data is increasingly producing large RDFS datasets, it becomes essential in building scalable reasoning engines over large triples. There have been many researches used expensive distributed framework, such as Hadoop, to reason over large RDFS triples. However, in many cases we are required to handle millions of triples. In such cases, it is not necessary to deploy expensive distributed systems because logic program based reasoners in a single machine can produce similar reasoning performances with that of distributed reasoner using Hadoop. In this paper, we propose a scalable RDFS reasoner using logical programming methods in a single machine and compare our empirical results with that of distributed systems. We show that our logic programming based reasoner using a single machine performs as similar as expensive distributed reasoner does up to 200 million RDFS triples. In addition, we designed a meta data structure by decomposing the ontology triples into separate sectors. Instead of loading all the triples into a single model, we selected an appropriate subset of the triples for each ontology reasoning rule. Unification makes it easy to handle conjunctive queries for RDFS schema reasoning, therefore, we have designed and implemented RDFS axioms using logic programming unifications and efficient conjunctive query handling mechanisms. The throughputs of our approach reached to 166K Triples/sec over LUBM1500 with 200 million triples. It is comparable to that of WebPIE, distributed reasoner using Hadoop and Map Reduce, which performs 185K Triples/sec. We show that it is unnecessary to use the distributed system up to 200 million triples and the performance of logic programming based reasoner in a single machine becomes comparable with that of expensive distributed reasoner which employs Hadoop framework.

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

The Configuration Design of Industrial Sewing Machine Kinematic Mechanism with Expert System (전문가 시스템을 이용한 공업용 재봉기 기구 메커니즘 구성설계)

  • 이장용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • The configuration design of kinematic mechanisms of industrial sewing machine has been studied using a functional approach. The configuration design methodology has been applied to shorten the development cycle time of mechanisms and to manage design data efficiently Expert system has been used to embody the decomposition of functional requirements. It has been interfaced with a CAD system through the API program to show the assembly and parts of the mechanism. Constraints also can be handled by the expert system through the rule induction and the case based reasoning process. The configuration design system includes the kinematical analysis and optimization of the mechanisms of an industrial sewing machine by the interface between the expert system and an analysis program by means of API Program supplied by expert system. The conceptual design of sewing machine mechanism can be Performed rapidly and efficiently.

  • PDF

Automated-Database Tuning System With Knowledge-based Reasoning Engine (지식 기반 추론 엔진을 이용한 자동화된 데이터베이스 튜닝 시스템)

  • Gang, Seung-Seok;Lee, Dong-Joo;Jeong, Ok-Ran;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06a
    • /
    • pp.17-18
    • /
    • 2007
  • 데이터베이스 튜닝은 일반적으로 데이터베이스 어플리케이션을 "좀 더 빠르게" 실행하게 하는 일련의 활동을 뜻한다[1]. 데이터베이스 관리자가 튜닝에 필요한 주먹구구식 룰(Rule of thumb)들을 모두 파악 하고 상황에 맞추어 적용하는 것은 비싼 비용과 오랜 시간을 요구한다. 그렇게 때문에 서로 다른 어플 리케이션들이 맞물려 있는 복잡한 서비스는 필수적으로 자동화된 데이터베이스 성능 관리와 튜닝을 필 요로 한다. 본 논문에서는 이를 해결하기 위하여 지식 도매인(Knowledge Domain)을 기초로 한 자동화 된 데이터베이스 튜닝 원칙(Tuning Principle)을 제시하는 시스템을 제안한다. 각각의 데이터베이스 튜닝 이론들은 지식 도매인의 지식으로 활용되며, 성능에 영향을 미치는 요소들을 개체(Object)와 콘셉트 (Concept)로 구성하고 추론 시스템을 통해 튜닝 원칙을 추론하여 쉽고 빠르게 현재 상황에 맞는 튜닝 방법론을 적용시킬 수 있다. 자동화된 데이터베이스 튜닝에 대해 여러 분야에 걸쳐 학문적인 연구가 이루어지고 있다. 그 예로써 Microsoft의 AutoAdmin Project[2], Oracle의 SQL 튜닝 아키텍처[3], COLT[4], DBA Companion[5], SQUASH[6] 등을 들 수 있다. 이러한 최적화 기법들을 각각의 기능적인 방법론에 따라 다시 분류하면 크게 Design Tuning, Logical Structure Tuning, Sentence Tuning, SQL Tuning, Server Tuning, System/Network Tuning으로 나누어 볼 수 있다. 이 중 SQL Tuning 등은 수치적으로 결정되어 이미 존재하는 정보를 이용하기 때문에 구조화된 모델로 표현하기 쉽고 사용자의 다양한 요구에 의해 변화하는 조건들을 수용하기 쉽기 때문에 이에 중점을 두고 성능 문제를 해결하는 데 초점을 맞추었다. 데이터베이스 시스템의 일련의 처리 과정에 따라 DBMS를 구성하는 개체들과 속성, 그리고 연관 관계들이 모델링된다. 데이터베이스 시스템은 Application / Query / DBMS Level의 3개 레벨에 따라 구조화되며, 본 논문에서는 개체, 속성, 연관 관계 및 데이터베이스 튜닝에 사용되는 Rule of thumb들을 분석하여 튜닝 원칙을 포함한 지식의 형태로 변환하였다. 튜닝 원칙은 데이터베이스 시스템에서 발생하는 문제를 해결할 수 있게 하는 일종의 황금률로써 지식 도매인의 바탕이 되는 사실(Fact)과 룰(Rule) 로써 표현된다. Fact는 모델링된 시스템을 지식 도매인의 하나의 지식 개체로 표현하는 방식이고, Rule 은 Fact에 기반을 두어 튜닝 원칙을 지식의 형태로 표현한 것이다. Rule은 다시 시스템 모델링을 통해 사전에 정의되는 Rule와 튜닝 원칙을 추론하기 위해 사용되는 Rule의 두 가지 타업으로 나뉘며, 대부분의 Rule은 입력되는 값에 따라 다른 솔루션을 취하게 하는 분기의 역할을 수행한다. 사용자는 제한적으로 자동 생성된 Fact와 Rule을 통해 튜닝 원칙을 추론하여 데이터베이스 시스템에 적용할 수 있으며, 요구나 필요에 따라 GUI를 통해 상황에 맞는 Fact와 Rule을 수동으로 추가할 수도 었다. 지식 도매인에서 튜닝 원칙을 추론하기 위해 JAVA 기반의 추론 엔진인 JESS가 사용된다. JESS는 스크립트 언어를 사용하는 전문가 시스템[7]으로 선언적 룰(Declarative Rule)을 이용하여 지식을 표현 하고 추론을 수행하는 추론 엔진의 한 종류이다. JESS의 지식 표현 방식은 튜닝 원칙을 쉽게 표현하고 수용할 수 있는 구조를 가지고 있으며 작은 크기와 빠른 추론 성능을 가지기 때문에 실시간으로 처리 되는 어플리케이션 튜닝에 적합하다. 지식 기반 모률의 가장 큰 역할은 주어진 데이터베이스 시스템의 모델을 통하여 필요한 새로운 지식을 생성하고 저장하는 것이다. 이를 위하여 Fact와 Rule은 지식 표현 의 기본 단위인 트리플(Triple)의 형태로 표현된다, 트리플은 Subject, Property, Object의 3가지 요소로 구성되며, 대부분의 Fact와 Rule들은 트리플의 기본 형태 또는 트리플의 조합으로 이루어진 C Condition과 Action의 두 부분의 결합으로 구성된다. 이와 같이 데이터베이스 시스템 모델의 개체들과 속성, 그리고 연관 관계들을 표현함으로써 지식들이 추론 엔진의 Fact와 Rule로 기능할 수 있다. 본 시스템에서는 이를 구현 및 실험하기 위하여 웹 기반 서버-클라이언트 시스템을 가정하였다. 서버는 Process Controller, Parser, Rule Database, JESS Reasoning Engine으로 구성 되 어 있으며, 클라이 언트는 Rule Manager Interface와 Result Viewer로 구성되어 었다. 실험을 통해 얻어지는 튜닝 원칙 적용 전후의 실행 시간 측정 등 데이터베이스 시스템 성능 척도를 비교함으로써 시스템의 효용을 판단하였으며, 실험 결과 적용 전에 비하여 튜닝 원칙을 적용한 경우 최대 1초 미만의 전처리에 따른 부하 시간 추가와 최소 약 1.5배에서 최대 약 3배까지의 처리 시간 개선을 확인하였다. 본 논문에서 제안하는 시스템은 튜닝 원칙을 자동으로 생성하고 지식 형태로 변형시킴으로써 새로운 튜닝 원칙을 파생하여 제공하고, 성능에 영향을 미치는 요소와 함께 직접 Fact과 Rule을 추가함으로써 커스터마이정된 튜닝을 수행할 수 있게 하는 장점을 가진다. 추후 쿼리 자체의 튜닝 및 인텍스 최적화 등의 프로세스 자동화와 Rule을 효율적으로 정의하고 추가하는 방법 그리고 시스템 모델링을 효과적으로 구성하는 방법에 대한 연구를 통해 본 연구를 더욱 개선시킬 수 있을 것이다.

  • PDF

FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic (결함수분석법과 퍼지논리를 이용한 FMECA 평가)

  • Kim, Dong-Jin;Shin, Jun-Seok;Kim, Hyung-Jun;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

Ontology Knowledge Base Scheme for User Query Semantic Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식베이스 스키마 구축)

  • Doh, Hana;Lee, Moo-Hun;Jeong, Hoon;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • The method of recent information retrieval passes into an semantic search to provide more accurate results than keyword-based search. But in common user case, they are still accustomed to using existing keyword-based search. Hence they are hard to create a typed structured query language. In this paper, we propose to ontology knowledge-base scheme for query interpretation of these user. The proposed scheme was designed based on the OWL-DL for description logic reasoning, it can provide a richer representation of the relationship between the object by using SWRL(Semantic Web Rule Language). Finally, we are describe the experimental results of the similarity measurement for verification of a user query semantic interpretation.

Knowledge Representation and Reasoning using Metalogic in a Cooperative Multiagent Environment

  • Kim, Koono
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.35-48
    • /
    • 2022
  • In this study, it propose a proof theory method for expressing and reasoning knowledge in a multiagent environment. Since this method determines logical results in a mechanical way, it has developed as a core field from early AI research. However, since the proposition cannot always be proved in any set of closed sentences, in order for the logical result to be determinable, the range of expression is limited to the sentence in the form of a clause. In addition, the resolution principle, a simple and strong reasoning rule applicable only to clause-type sentences, is applied. Also, since the proof theory can be expressed as a meta predicate, it can be extended to the metalogic of the proof theory. Metalogic can be superior in terms of practicality and efficiency based on improved expressive power over epistemic logic of model theory. To prove this, the semantic method of epistemic logic and the metalogic method of proof theory are applied to the Muddy Children problem, respectively. As a result, it prove that the method of expressing and reasoning knowledge and common knowledge using metalogic in a cooperative multiagent environment is more efficient.

The Development of an Expert System for Supporting the Diagnosis of Diffuse Interstitial Lung Diseases by High Resolution Computed Tomography$^1$

  • Heon Han;Chung, Sung-Hoon;Chae, Young-Moon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.378-382
    • /
    • 2001
  • The purpose of this study was to develop an expert system supporting the diagnosis of diffuse interstitial lung disease by high resolution computed tomography. CLIPS(C language integrated production system) with rule-based reasoning was used to develop the system. Development of expert system had three stages knowledge acquisition, knowledge representation, and reasoning. Knowledge was obtained and integrated, from tables and figure legends of a representative textbook in the domain of this expert system, High-Resolution CT of the Lung, by Webb WR, Mueller NL, and Naidich DP. The acquired knowledge was analyzed to form a knowledge base. Overlapping knowledge was eliminated, similar pieces of knowledge were combined and professional terms were defined. The most important knowledge of findings was then selected for each disease. After groupings of combined findings were made, disease groups were analyzed sequentially to determine final diagnoses. The system was based upon the input of 69 diseases, 185 findings, 73 conditions, 387 status, and 62 rules. The system was set up to determine the diagnoses of diseases from the combination of findings using forward reasoning. In an empirical trial, the system was applied to support the diagnosis of 40 cases of diffuse interstitial lung diseases. The performance of two doctors with support of the system was compared to that of another two doctors without support of the system. The two doctors with the support of the system made more accurate diagnoses than the doctors without the support of the system. The system is believed to be useful for the diagnosis of rare diseases and for cases with many possible differential diagnoses. In conclusion, an expert system supporting the high resolution computed tomographic diagnosis of diffuse interstitial lung disease was developed and the system is thought to be useful for medical practice.

  • PDF