Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.916-919
/
2018
심층신경망 모델은 우수한 성능을 갖고 있음에도 불구하고 모델이 어떤 판단 과정을 통해 결론을 내렸는지 파악하기 어렵다. 그에 따라 판단에 대한 근거가 중요한 분야에서는 심층신경망 모델을 적용한 실제 사례를 찾기 어렵다. 인공신경망 모델을 해석하기 어렵다는 문제를 해결하기 위해 내부 구조를 이용하여 규칙을 추출하는 decompositional 접근법이 제안되었으나 기존의 연구는 대부분 은닉층이 1개인 다층 퍼셉트론 모델에서 규칙을 생성하는 것을 가정하고 있다. 오늘날 사용하는 심층신경망 모델은 일반적으로 여러 은닉층을 가지고 있기 때문에 기존의 접근법을 그대로 적용할 경우 규칙 불확실성에 따라 잘못된 규칙을 추출하는 문제가 발생한다. 본 논문은 decompositional 접근법에 존재하는 규칙 불확실성 문제를 완화하고 깊이가 깊은 심층신경망 모델에 규칙을 추출하는 방법을 제안한다. 제안한 접근법은 실제 활성화 값을 통해 지식을 추출하며, 이를 통해 규칙 불확실성 문제를 완화할 수 있었다.
Journal of the Korean Society for Precision Engineering
/
v.11
no.4
/
pp.106-113
/
1994
Household electrical appliances should be designed to satisfy safety standards. An expert system is implemented to support the design process. The general-purpose expert system shell. ART-IM which is running under MS-DOS environment, is used to construct the knowledge-base. A set of rules has been extracted from the EN 60 335-1 that is British standard specification for the safety of household and similar electrical appliances. The main focus of this paper is on codes that have systematic and mormative structures. The internal structure of the safety standard is analysed to improve the process of rule extraction.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.251-254
/
2003
데이터는 어떤 특성을 나타내는 언어적 또는 수치적 값들의 표현이다. 이러한 데이터들을 목적에 따라 구성한 것이 정보이며, 문제 해결이나 패턴 분류, 또는 의사 결정을 위해 정보들간의 관계를 규칙으로 체계화하는 것이 지식이다. 현재 대부분의 산업 분야에서 시스템에 대한 이해를 높이고 시스템의 성능을 향상시키기 위해 지식을 추출하고, 적용시키는 작업들이 활발히 이루어지고 있다. 지식 정보의 추출은 지식의 획득, 표현, 구현의 단계로 구성되며 이렇게 추출된 지식 정보는 규칙으로 도출된다. 본 논문에서는 여러 산업 분야에 걸쳐 다양하게 적용되는 지식 정보 추출 방법들에 대해 그 영역별로 알아보고 여러 시험 데이터들과 실제 시스템에 클러스터링(CL), 입력공간 분할(ISP), 뉴로-퍼지(NF), 신경망(NN), 확장 행렬(EM) 등의 방법들을 적용시킨 결과들을 비교 분석하고자 한다.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.2
/
pp.211-216
/
2004
Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.377-380
/
2012
본 연구에서는 학습데이터의 빈도요소를 반영하도록 수정된 구조의 FMM 신경망을 소개하고, 이로부터 패턴 분류를 위한 지식 표현을 생성하는 방법론을 제안한다. 하이퍼박스 멤버쉽함수는 5종류의 퍼지 분할을 기반으로 설정한 구간에 대하여 소속정도를 반영하여 결정하며, 각 차원별로 특징범위의 폭과 빈도 요소로부터 가중치 값이 학습된다. 본 연구에서는 제안된 이론을 수화인식 문제를 대상으로 고찰하였다. 인식 시스템의 구성은 특징추출을 위하여 3차원으로 확장된 구조의 CNN 모델을 사용하였으며, 수화패턴 데이터의 표현은 모션 히스토리 볼륨(Motion History Volume) 구조를 기반으로 하였다. 6종류의 수화패턴 동영상으로부터 27개 특징요소를 추출하고 이를 사용한 FMM 신경망의 학습과정과 지식의 추출 과정을 실험으로 보이고 그 유용성을 고찰한다.
Data is the expression of the language or numerical values that show some characteristics. And information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns and make decisions. Today, knowledge extraction and application of the knowledge are broadly accomplished to improve the comprehension and to elevate the performance of systems in several industrial fields. The knowledge extraction could be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge can be drawn by rules. Clustering (CU, input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for expression the knowledge by rules. In this paper, the various approaches of the knowledge extraction are examined by categories that separate the methods by the applied industrial fields. Also, the several test data and the experimental results are compared and analysed based upon the applied techniques that include CL, ISP, NF, NN, EM, and so on.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.447-450
/
2003
In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.
Journal of Advanced Marine Engineering and Technology
/
v.36
no.8
/
pp.1123-1128
/
2012
The goal of this research is to develop an error-driven noun-connection rules which is used for breaking complicate nouns in Korean morphology analysis module. We collected complicate nouns from Web sites, and analyzed them by CnuMa. Whenever we find errors from outputs of the analyzer, we write noun-connection rules to correct the errors. The noun-connection rules are devised by considering left/right contexts in compound nouns. The error-driven noun-connection rules are helpful in improving precision and recall of a Korean morphology analyzer, CnuMa by 2.8% and 10.8%, respectively.
Journal of the Korean Operations Research and Management Science Society
/
v.30
no.2
/
pp.185-199
/
2005
With the growth of internet shopping malls, there is increasing interest in comparison shopping mall. However most comparison sites compare only book prices by collecting simple XML data and do not provide .the exact comparison Including precise shipping costs. Shipping costs vary depending on each customer's address, the delivery method, and the category of selected goods, so rule based system is required in order to calculate exact shipping costs. Therefore, we designed and implemented comparison shopping mall which compares not only book prices but also shipping costs using rule based inference. By adopting the extensible Rule Markup language (XRML) approach, we proposed the methodology of extracting delivery rules from Web pages of each shopping mall. The XRML approach can facilitate nearly automatic rule extraction from Web pages and consistency maintenance between Web pages and rule base. We developed a ConsiderD system which applies our rule acquisition methodology based on XRML. The objective of the ConsiderD system is to compare the exact total cost of books including the delivery cost over Amazon.com, BarnesandNoble.com, and Powells.com. With this prototype, we conducted an experiment to show the potential of automatic rule acquisition from Web pages and illustrate the effect of delivery cost.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.05a
/
pp.297-306
/
2007
지능정보시스템 구축에 있어서 자동화가 어려운 단계중의 하나인 규칙 습득을 위해 활용되는 방법중의 하나가 제한된 언어집합 기법을 이용하는 것이다. 그러나 제한된 언어집합 기법을 이용해 규칙을 생성하기 위해서는 규칙을 구성하는 변수와 그 값들에 대한 정보가 사전에 정의되어 있어야 하는데, 유동성이 큰 웹 환경에서 예상 가능한 모든 변수와 그 값을 사전에 정의하는 것이 매우 어렵다. 이에 본 연구에서는 이러한 한계를 극복하기 위해 제한된 언어집합 기법과 온톨로지를 이용한 규칙 생성 방법론을 제시하였다. 이를 위해 지식의 습득 대상이 되는 특정 문장은 문법구조 분석기를 이용해 파싱을 수행하며, 파싱된 단어들을 이용해 규칙의 구성 요소인 변수와 그 값을 식별한다. 그러나 규칙을 내포한 자연어 문장의 불완전성으로 인해 변수가 명확하지 않거나 완전히 빠져 있는 경우가 흔히 발생하며, 이로 인해 온전한 형식의 규칙 생성이 어렵게 된다. 이 문제는 도메인 온톨로지의 생성을 통해 해결하였다. 이 온톨로지는 특정 도메인을 구성하고 있는 개념들간의 관계를 포함하고 있다는 점에서는 기존의 온톨로지와 유사하지만, 규칙을 완성하는 과정에서 사용된 개념들의 사용빈도를 기반으로 온톨로지의 구조를 변경하고, 결과적으로 더 정확한 규칙의 생성을 지원한다는 점에서 기존의 온톨로지와 차별화된다. 이상의 과정을 통해 식별된 규칙의 구성요소들은 제한된 언어집합 기법을 이용해 구체화된다. 본 연구에서 제안하는 방법론을 설명하기 위해 임의의 인터넷 쇼핑몰에서 수행되는 배송관련 웹 페이지를 선정하였다. 본 방법론은 XRML에서의 지식 습득 과정의 효율성 제고에 기여할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.