• Title/Summary/Keyword: Rule Evaluation

Search Result 582, Processing Time 0.019 seconds

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

A Study on the Relationship Between Online Community Characteristics and Loyalty : Focused on Mediating Roles of Self-Congruency, Consumer Experience, and Consumer to Consumer Interactivity (온라인 커뮤니티 특성과 충성도 간의 관계에 대한 연구: 자아일치성, 소비자 체험, 상호작용성의 매개적 역할을 중심으로)

  • Kim, Moon-Tae;Ock, Jung-Won
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.157-194
    • /
    • 2008
  • The popularity of communities on the internet has captured the attention of marketing scholars and practitioners. By adapting to the culture of the internet, however, and providing consumer with the ability to interact with one another in addition to the company, businesses can build new and deeper relationships with customers. The economic potential of online communities has been discussed with much hope in the many popular papers. In contrast to this enthusiastic prognostications, empirical and practical evidence regarding the economic potential of the online community has shown a little different conclusion. To date, even communities with high levels of membership and vibrant social arenas have failed to build financial viability. In this perspective, this study investigates the role of various kinds of influencing factors to online community loyalty and basically suggests the framework that explains the process of building purchase loyalty. Even though the importance of building loyalty in an online environment has been emphasized from the marketing theorists and practitioners, there is no sufficient research conclusion about what is the process of building purchase loyalty and the most powerful factors that influence to it. In this study, the process of building purchase loyalty is divided into three levels; characteristics of community site such as content superiority, site vividness, navigation easiness, and customerization, the mediating variables such as self congruency, consumer experience, and consumer to consumer interactivity, and finally various factors about online community loyalty such as visit loyalty, affect, trust, and purchase loyalty are those things. And the findings of this research are as follows. First, consumer-to-consumer interactivity is an important factor to online community purchase loyalty and other loyalty factors. This means, in order to interact with other people more actively, many participants in online community have the willingness to buy some kinds of products such as music, content, avatar, and etc. From this perspective, marketers of online community have to create some online environments in order that consumers can easily interact with other consumers and make some site environments in order that consumer can feel experience in this site is interesting and self congruency is higher than at other community sites. It has been argued that giving consumers a good experience is vital in cyber space, and websites create an active (rather than passive) customer by their nature. Some researchers have tried to pin down the positive experience, with limited success and less empirical support. Web sites can provide a cognitively stimulating experience for the user. We define the online community experience as playfulness based on the past studies. Playfulness is created by the excitement generated through a website's content and measured using three descriptors Marketers can promote using and visiting online communities, which deliver a superior web experience, to influence their customers' attitudes and actions, encouraging high involvement with those communities. Specially, we suggest that transcendent customer experiences(TCEs) which have aspects of flow and/or peak experience, can generate lasting shifts in beliefs and attitudes including subjective self-transformation and facilitate strong consumer's ties to a online community. And we find that website success is closely related to positive website experiences: consumers will spend more time on the site, interacting with other users. As we can see figure 2, visit loyalty and consumer affect toward the online community site didn't directly influence to purchase loyalty. This implies that there may be a little different situations here in online community site compared to online shopping mall studies that shows close relations between revisit intention and purchase intention. There are so many alternative sites on web, consumers do not want to spend money to buy content and etc. In this sense, marketers of community websites must know consumers' affect toward online community site is not a last goal and important factor to influnece consumers' purchase. Third, building good content environment can be a really important marketing tool to create a competitive advantage in cyberspace. For example, Cyworld, Korea's number one community site shows distinctive superiority in the consumer evaluations of content characteristics such as content superiority, site vividness, and customerization. Particularly, comsumer evaluation about customerization was remarkably higher than the other sites. In this point, we can conclude that providing comsumers with good, unique and highly customized content will be urgent and important task directly and indirectly impacting to self congruency, consumer experience, c-to-c interactivity, and various loyalty factors of online community. By creating enjoyable, useful, and unique online community environments, online community portals such as Daum, Naver, and Cyworld are able to build customer loyalty to a degree that many of today's online marketer can only dream of these loyalty, in turn, generates strong economic returns. Another way to build good online community site is to provide consumers with an interactive, fun, experience-oriented or experiential Web site. Elements that can make a dot.com's Web site experiential include graphics, 3-D images, animation, video and audio capabilities. In addition, chat rooms and real-time customer service applications (which link site visitors directly to other visitors, or with company support personnel, respectively) are also being used to make web sites more interactive. Researchers note that online communities are increasingly incorporating such applications in their Web sites, in order to make consumers' online shopping experience more similar to that of an offline store. That is, if consumers are able to experience sensory stimulation (e.g. via 3-D images and audio sound), interact with other consumers (e.g., via chat rooms), and interact with sales or support people (e.g. via a real-time chat interface or e-mail), then they are likely to have a more positive dot.com experience, and develop a more positive image toward the online company itself). Analysts caution, however, that, while high quality graphics, animation and the like may create a fun experience for consumers, when heavily used, they can slow site navigation, resulting in frustrated consumers, who may never return to a site. Consequently, some analysts suggest that, at least with current technology, the rule-of-thumb is that less is more. That is, while graphics etc. can draw consumers to a site, they should be kept to a minimum, so as not to impact negatively on consumers' overall site experience.

  • PDF