• Title/Summary/Keyword: Rule Descriptor

Search Result 4, Processing Time 0.027 seconds

Hybrid Behavior Evolution Model Using Rule and Link Descriptors (규칙 구성자와 연결 구성자를 이용한 혼합형 행동 진화 모델)

  • Park, Sa Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.3
    • /
    • pp.67-82
    • /
    • 2006
  • We propose the HBEM(Hybrid Behavior Evolution Model) composed of rule classification and evolutionary neural network using rule descriptor and link descriptor for evolutionary behavior of virtual robots. In our model, two levels of the knowledge of behaviors were represented. In the upper level, the representation was improved using rule and link descriptors together. And then in the lower level, behavior knowledge was represented in form of bit string and learned adapting their chromosomes by the genetic operators. A virtual robot was composed by the learned chromosome which had the best fitness. The composed virtual robot perceives the surrounding situations and they were classifying the pattern through rules and processing the result in neural network and behaving. To evaluate our proposed model, we developed HBES(Hybrid Behavior Evolution System) and adapted the problem of gathering food of the virtual robots. In the results of testing our system, the learning time was fewer than the evolution neural network of the condition which was same. And then, to evaluate the effect improving the fitness by the rules we respectively measured the fitness adapted or not about the chromosomes where the learning was completed. In the results of evaluating, if the rules were not adapted the fitness was lowered. It showed that our proposed model was better in the learning performance and more regular than the evolutionary neural network in the behavior evolution of the virtual robots.

  • PDF

Inspection for Inner Wall Surface of Communication Conduits by Laser Projection Image Analysis (레이저 투영 영상 분석에 의한 통신 관로 내벽 검사 기법)

  • Lee Dae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1131-1138
    • /
    • 2006
  • This paper proposes a novel method for grading of underground communication conduits by laser projection image analysis. The equipment thrust into conduit consists of a laser diode, a light emitting diode and a camera, the laser diode is utilized for generating projection image onto pipe wall, the light emitting diode for lighting environment and the image of conduit is acquired by the camera. In order to segment profile region, we used a novel color difference model and multiple thresholds method. The shape of profile ring is represented as a minimum diameter and the Fourier descriptor, and then the pipe status is graded by the rule-based method. Both local and global features of the segmented ring shaped, the minimum diameter and the Fourier descriptor, are utilized, therefore injured and distorted pipes can be correctly graded. From the experimental results, the classification is measured with accuracy such that false alarms are less than 2% under the various conditions.

  • PDF

Robust Head Tracking using a Hybrid of Omega Shape Tracker and Face Detector for Robot Photographer (로봇 사진사를 위한 오메가 형상 추적기와 얼굴 검출기 융합을 이용한 강인한 머리 추적)

  • Kim, Ji-Sung;Joung, Ji-Hoon;Ho, An-Kwang;Ryu, Yeon-Geol;Lee, Won-Hyung;Jin, Chung-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 2010
  • Finding a head of a person in a scene is very important for taking a well composed picture by a robot photographer because it depends on the position of the head. So in this paper, we propose a robust head tracking algorithm using a hybrid of an omega shape tracker and local binary pattern (LBP) AdaBoost face detector for the robot photographer to take a fine picture automatically. Face detection algorithms have good performance in terms of finding frontal faces, but it is not the same for rotated faces. In addition, when the face is occluded by a hat or hands, it has a hard time finding the face. In order to solve this problem, the omega shape tracker based on active shape model (ASM) is presented. The omega shape tracker is robust to occlusion and illuminationchange. However, whenthe environment is dynamic,such as when people move fast and when there is a complex background, its performance is unsatisfactory. Therefore, a method combining the face detection algorithm and the omega shape tracker by probabilistic method using histograms of oriented gradient (HOG) descriptor is proposed in this paper, in order to robustly find human head. A robot photographer was also implemented to abide by the 'rule of thirds' and to take photos when people smile.

Fast Leaf Recognition and Retrieval Using Multi-Scale Angular Description Method

  • Xu, Guoqing;Zhang, Shouxiang
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1083-1094
    • /
    • 2020
  • Recognizing plant species based on leaf images is challenging because of the large inter-class variation and inter-class similarities among different plant species. The effective extraction of leaf descriptors constitutes the most important problem in plant leaf recognition. In this paper, a multi-scale angular description method is proposed for fast and accurate leaf recognition and retrieval tasks. The proposed method uses a novel scale-generation rule to develop an angular description of leaf contours. It is parameter-free and can capture leaf features from coarse to fine at multiple scales. A fast Fourier transform is used to make the descriptor compact and is effective in matching samples. Both support vector machine and k-nearest neighbors are used to classify leaves. Leaf recognition and retrieval experiments were conducted on three challenging datasets, namely Swedish leaf, Flavia leaf, and ImageCLEF2012 leaf. The results are evaluated with the widely used standard metrics and compared with several state-of-the-art methods. The results and comparisons show that the proposed method not only requires a low computational time, but also achieves good recognition and retrieval accuracies on challenging datasets.