• Title/Summary/Keyword: Rubber friction

Search Result 192, Processing Time 0.027 seconds

Surface Modification of Aluminum by Nitrogen-Ion Implantation

  • Kang Hyuk-Jin;Ahn Sung-Hoon;Lee Jae-Sang;Lee Jae-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2006
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. Ion implantation is a novel surface modification technology that enhances the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into AC7A aluminum substrates which would be used as molds for rubber molding. The composition of nitrogenion implanted aluminum and distribution of nitrogen ions were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimen was higher than that of untreated specimen. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that implantation of nitrogen ions enhances the mechanical properties of aluminum mold.

Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model (마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

Tribological and Mechanical Properties of UHMWPE/HDPE Composites

  • Na, Woo Seok;Lee, Kwang Ho;Kong, Tae Woong;Baek, Jung Youn;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.234-238
    • /
    • 2018
  • The influence of reinforcing UHMWPE powder on the tribological and mechanical properties of HDPE was investigated. The circularizing of UHMWPE powder was improved by high-speed rotation to enhance particle distribution and flowability. HDPE composites reinforced with UHMWPE powder in the range of 0-50 wt% were prepared by co-rotating twin screw extrusion. The abrasion resistance, plane friction coefficient, tensile strengths, and impact strengths of the composites were investigated as a function of the UHMWPE content. An increasing UHMWPE content decreased the plane friction coefficient and increased the abrasion resistance and impact strength. It is expected that HDPE composites reinforced with spherical UHMWPE powder particles can be used to improve the durability of products such as pipes in the future.

Seismic applicability of a long-span railway concrete upper-deck arch bridge with CFST rigid skeleton rib

  • Shao, Changjiang;Ju, Jiann-wen Woody;Han, Guoqing;Qian, Yongjiu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.645-655
    • /
    • 2017
  • To determine the seismic applicability of a long-span railway concrete upper-deck arch bridge with concrete-filled steel-tube (CFST) rigid skeleton ribs, some fundamental principles and seismic approaches for long-span bridges are investigated to update the design methods in the current Code for Seismic Design of Railway Engineering of China. Ductile and mixed isolation design are investigated respectively to compare the structural seismic performances. The flexural moment and plastic rotation demands and capacities are quantified to assess the seismic status of the ductile components. A kind of triple friction pendulum (TFP) system and lead-plug rubber bearing are applied simultaneously to regularize the structural seismic demands. The numerical analysis shows that the current ductile layout with continuous rigid frame approaching spans should be strengthened to satisfy the demands of rare earthquakes. However, the mixed isolation design embodies excellent seismic performances for the continuous girder approaching span of this railway arch bridge.

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

Improvement of Frictional Property of BR/CIIR Composite Rubber for Shoes Outsole (운동화 겉창용 BR/CIIR 고무 복합체의 마찰특성 향상에 대한 연구)

  • Pyo, Kyungduk;Choi, Jungsu;Lee, Jongnyun;Park, Chacheol
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.255-261
    • /
    • 2013
  • This paper introduced a new preparation method of a composite rubber by mixing BR (butadiene rubber) and CIIR (chloro-isobutyl rubber) for the purpose of improving frictional property of BR. Since BR has high abrasion and low frictional properties, its frictional property needs to be enhanced in order to be used as an outsole of a sport shoe. Such enhancement was difficult to achieve by simple blending of CIIR. In here, CIIR was added into BR matrix after CIIR was pre-crosslinked for a time period, and both high frictional and high abrasion resistance properties were achieved. Our experiments showed that the composite rubber blend of 60% of BR and 40% of pre-crosslinked CIIR had desired BR's frictional and abrasion resistance properties for sport shoes.

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Characteristics of Sand-Rubber mixtures with Strain Level (모래-고무 혼합재의 변형율 크기에 따른 거동 특성)

  • Lee, Chang-Ho;Truong, Q. Hung;Eom, Yong-Hun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.90-96
    • /
    • 2008
  • Engineered mixtures composed of rigid sand particles and soft rubber particles are tested to investigate their behavior with strain level. Mixtures are prepared with different volumetric sand fractions (sf) to identify response using small strain resonant column, intermediate strain oedometer, and large strain direct shear tests. The small strain shear modulus and damping ratio are determined with volumetric sand fractions. The asymmetric frequency response curve increases with decreasing sand fraction. Linear responses of shear strain and damping ratio with shear strain are observed at the mixture of sf=0.2. Vertical strain increases with decreasing sand fraction. Mixtures with $04.{\leq}sf{\leq}0.6$ show the transitional stress-deformation behavior from rubber-like to sand-like behavior. The friction angle increases with the sand fraction and no apparent peak strength is observed in mixture without sf=1.0.

  • PDF

The Development of Outsole for Wet Traction Enhancement (습윤 접지력 향상을 위한 안전화 겉창 개발 연구)

  • Kim, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • Many occupational workers or professionals have to walk on the various floors for a long period of time. The objective of this study was to develop the safety shoes with increased traction through the material selection. In order to fulfill our objective, first, two kinds of filler were selected to compare the wear mechanism at outsole surface. The developed rubber materials were tested with two kinds of portable slip meters. The sample safety shoes with developed rubber materials were also tested with subject in the laboratory. During walking, the safety shoes were naturally abraded with counter surface. The coefficient of friction(COF) was gradually decreased with number of steps to 30,000, while the COF was abruptly increased from 30,000 to 40,000. The experimental results showed that COF tested with silica rubber was at least 10% higher than that with carbon black rubber in wet or detergent condition. It has been well recognized that filler properties play a important role in wet traction in the tire industry. However it has been unclear that filler properties would be decisive factor in safety shoes. Our study shows that silica exhibits a higher slip resistance than carbon black without reference to wear states in wet or detergent condition. So, this results will provide guides for outsole compounders to develop new products and improve product performance.

Evaluation of Non-slip for Vehicle's Environmental Sub-Mat (자동차용 친환경적인 Sub-Mat의 Non-Slip기능 평가)

  • Eo, Yu-Rim;Kim, Ki-Tai;Kim, Joo-Yong;Kim, Young-Su
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Automotive sub-mat carpet for convenience and comfort of floor administration is additional supplemented floor mat. Sub Mat Backing of the current vehicle's materials reclaimed rubber, PVC, etc. are used, but secondary rubber and PVC Backing have bad sound absorption. Also rubber is heavy too. Contact surfaces between PET staple fiber, PET non-woven, PVC backing and car's floor carpet was measured the coefficient of friction for each sub-mat's non-slip evaluation. A surface of PET non-woven sub-mat has the highest coefficient of friction. Each of sample was observed by optical microscope the contact surfaces before and after. Contact surfaces of PET staple fiber sub-mat was changed increasingly to non-woven. This fact is shown that the sub-mat would be tangled between its contact surface and top of the floor carpet. It is expected to be highly non-slip. In case of PET non-woven sub-mat had not different for contact surfaces between before and after. And PVC backing was shown lower non-slip than other samples. The result of optical microscope and coefficient of friction is seems to be related.

  • PDF