• Title/Summary/Keyword: Rubber bearing

Search Result 291, Processing Time 0.033 seconds

A study on Contact force of Rubber Seal for wheel bearing (휠베어링 고무 실의 접촉력에 관한 연구)

  • Choi No Jin;Hur Young Min;Lee Kwang O;Kang Sung Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.145-151
    • /
    • 2006
  • Wheel bearing unit has been exclusively applied to car wheel supporting device. The seal for wheel bearing is required to have both high sealing effects and low reaction forces because wheel bearing are operated on adverse environmental conditions such as mud and splash water. High sealing effects are for the protection of bearing ball wear from dust influx. In order to ensure high sealing effects, it is a easiest way to increase contact force which are affected by geometric characteristics, material properties and interferences between seal and inner bearing but induces higher wear phenomena. Interferences in all variables are most important factor to determine the performance of wheel bearing. In this study, optimization of interference amount was performed with finite element analysis with commercial code ABAQUS. For the sake of finite element analysis, tensile tests of rubber material were conducted and governing equation of nonlinear behavior was achieved. Hock-up bearing was manufactured with optimized interference amount. Results of torque and mud spray tests using this bearing unit are performed. Less torque and moisture influx of bearing with optimized interference amount is evidence to validity of this study.

Experimental Evaluation of Seismic Performance of Laminated Elastomeric Bearing and Lead-Rubber Bearing (적층고무베어링과 납-고무베어링의 내진 성능에 관한 실험적 평가)

  • 김대곤;이상훈;김대영;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.53-62
    • /
    • 1998
  • Experimental studies for the laminated elastomeric bearing and the lead-rubber bearing, those are often used to improve the seismic capacity of the structures recently, are conducted to evaluate the seismic capacity of the bearings. The shear stiffness of the bearings decreases as the shear strain amplitude or the constant axial load level increases, but not sensitive to the strain rates effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

Finite Element Analysis of High Damping Rubber Bearing for Seismic Isolation (고감쇠면진고무베어링의 유한요소해석)

  • Juhn, J.B.;Kim, H.J.;Jung, K.S.;Kim, K.S.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.292-297
    • /
    • 2000
  • The seismic isolation technology has appeared to be increasingly necessary for highway bridges, LNG tank, nuclear power plant, and building structures in view of earthquake vibrations. Also high-technology industries require effective seismic protection. The Seismic Isolation Bearing - High Damping Rubber Bearing - system has been counted as the most effective way fur seismic isolation, which is now under development and widely used in industries. Here, the commercial FEM software for nonlinear analysis, MARC, has provided force-displacement curves on the rubber system. The analyses have been carried out about fourteen cases; 25%, 50%, 75%, 100%, 125% and 150% horizontal displacements with a different frequency - 0.01Hz and 0.50Hz - and 100% horizontal displacement with four different frequency - 0.01Hz, 0.16667Hz, 0.3333Hz and 0.50Hz. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test and planar shear test.

  • PDF

Inelastic Response Evaluation of Lead-Rubber Bearing Considering Heating Effect of Lead Core (납심의 온도상승효과를 고려한 납-고무받침(LRB)의 비탄성응답 평가)

  • Yang, Kwang-Kyu;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.311-318
    • /
    • 2016
  • The lead-rubber bearing (LRB) dissipates seismic energy through plastic deformation of lead core. Under large-displacement cyclic motion, the temperature increases in the lead core. The shear strength of a lead-rubber bearing is reduced due to the heating effect of the lead core. In this study, the seismic responses such as displacement increasing, shear strength and vertical stiffness degradations of LRB due to the heating effect are evaluated for design basis earthquake (DBE) and beyond design basis earthquake (150% DBE, 167% DBE, 200% DBE).

An Experimental Study of the Seismic Isolation Systems (or Equipment Isolation : Evaluation of Damping Effect (기기면진을 위한 면진장치의 거동분석실험 (II) : 감쇠특성 분석)

  • 전영선;김민규;최인길;김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.411-418
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. for this Purpose, shaking table tests were performed. The natural rubber bearing (NRB) and high damping rubber bearing (HDRB) were selected for the isolation. Peak ground acceleration, damping characteristics of isolation system and frequency contents of selected earthquake motions were considered. finally, it is presented that the NRB and HDRB systems are effective for the small equipment isolation and the damping of isolation systems can be affected to the seismic isolation effect.

  • PDF

Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB) (적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측)

  • Hwang, Kee Tae;Seo, Dae Won;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

Seismic Performance Improvement of Liquid Storage Tank using Lead Rubber Bearing (납고무받침을 이용한 액체저장탱크 내진성능향상)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.441-449
    • /
    • 2019
  • Recently, interest in the seismic safety of structures is rising in South Korea due to the occurrences of earthquakes of 5.0 or greater magnitudes such as Gyeongju earthquake (September 2016) and Pohang earthquake (November 2017). In particular, the importance of living facilities that cause human injuries and property losses is more emphasized. Representative living facilities include gas and oil storage facilities and water tanks. In this study, the seismic performance of liquid storage tanks is improved by applying the lead rubber bearing, which is a seismic isolation method. The lead rubber bearing was designed considering the foundation of liquid storage tanks, and the general properties of the lead rubber bearing were verified through compression and shear tests using fabricated specimens. Furthermore, the behaviors of liquid storage tanks according to seismic and non-seismic isolations were analyzed through durability test, shaking table test and finite element analysis using ANSYS.

Demand Capacities of Rubber Bear ing for Seismic Isolated Building (고성능 적층고무 면진장치의 요구 성능)

  • Hwang, Kee-Tae;Rim, Jong-Man;Kim, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.487-494
    • /
    • 2006
  • The ultimate capacities of a rubber bearing are defined by compressive stress, shear strain, and stabilized roster ing force. The experiments were conducted with parameters of shesr elasticity(G) and first shape factor(S1), second shape factor(S2) for rubber bearing. Considering with test results, the ultimate capacities were verified, and furthermore the influence of those parameters were clarified. Using test results stable deformation of rubber bearings for designing was proposed.

  • PDF

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Compression and Shear Capacity of Rubber Bearings with Various Geometric Parameters (다양한 기하학적 인자를 고려한 고무받침의 압축 및 전단 내력)

  • Park, Ji Yong;Kim, Joo Woo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.559-570
    • /
    • 2014
  • In this study, compression and shear characteristics of laminated rubber bearings and lead rubber bearings with various parameters are investigated by using material and geometric nonlinear three-dimensional finite element analysis. Rubber coupon tests are performed to make a model of the laminated rubber bearings. In addition, the material constants of the rubber are calculated by the curve fitting process of stress-strain relationship. The finite element analysis and experimental tests of the laminate rubber bearings are used to verify the validity of the rubber material constants. It is seen that the compression behavior of the laminated rubber bearings and lead rubber bearings mainly varies depending on the first shape factors and their shear behavior significantly varies depending on the second shape factors. In addition, the horizontal stiffness and energy dissipation capacity of lead rubber bearing are increased when the diameter of a lead bar is increased.