• Title/Summary/Keyword: Rubber Materials

Search Result 1,020, Processing Time 0.032 seconds

DEPENDENCE OF RUBBER FRICTION UPON ITS ELASTIC CHARACTERISTICS

  • Nakamura, T.;Hanase, T.;Itoigawa, F.;Matsubara, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.187-188
    • /
    • 2002
  • Rubber has large differences in elastic characteristics from the other solid materials such as metals. Firstly, the rubber exhibits considerably large elastic compliance. Second is highly non-linear elasticity in which the compliance decreases with increase in strain. The main objective in this research is to reveal the dependence of rubber friction upon these elastic characteristics of the rubber in detail. A super elastic FEM analysis is carried out with using an elastic property of practical rubber. From the calculated result, it is cleared that the rubber makes large real contacting area easier than the metals.

  • PDF

The impact of different shapes of aggregate and crumb rubber on the deformation properties of asphalt concrete

  • Felix N. Okonta;Koketso Tshukutsoane;Babak Karimi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • Bitumen and high-quality subangular aggregates, the two principal materials used for asphalt concrete construction, are finite and expensive materials. The general availability of crumb rubber and naturally occurring aggregates of different shapes, especially flat and elongated shapes, indicates that they are feasible alternative materials for expanding the volume of bitumen and utilizing a wider range of aggregate shapes for the development of asphalt concrete, with an associated environmental benefit. The study investigated the effect of adding up to 15% crumb rubber and aggregates sorted into different groups, i.e., rounded, elongated, flat, and their combinations, on the rheological and mechanical properties and durability of 50/70 of hot-mix asphalt pavement. The addition of crumb rubber decreased ductility and penetration but increased the softening point. For a 5.5% bitumen content, asphalt concrete briquettes consisting of 7% crumb rubber and three types of aggregate shapes, i.e., 100% rounded, a mix of 75% rounded and 25% elongated, and a mix of 75% rounded, 15% elongated and 10% flat, were associated with high Marshall stability and indirect tensile strength as well as low lateral deformation due to their high solidity and moderate angularity ratio. Also, the addition of 7% crumb rubber resulted in a significant improvement in the tensile strength ratio and rebound strain of briquettes consisting of 75% rounded and 25% elongated aggregates and those with 75% rounded, 15% elongated and 10% flat aggregates. In relation to the parameters investigated, the three groups of briquettes met some of the local (South Africa) requirements for the surface course and base course of low traffic volume roads.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

Study on Surface Chemical Structure and Mechanical Properties of EPDM Rubber with Microwave Irradiation Time

  • Eom, SeoBin;Lee, Sun Young;Park, Sung Han;Lee, Seung Goo
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.124-130
    • /
    • 2018
  • Recently, microwaves have been used for desulfurization because they can selectively dissociate C-S and S-S bonds present in vulcanized rubber. In this study, we investigated the changes in structural and physical properties of EPDM (Ethylene propylene diene monomer) rubber by irradiating it with microwaves for different durations. The surface chemical composition of the irradiated EPDM rubber was analyzed by FT-IR, XPS, and EDS analyses. It was confirmed by XPS that C-S and S-S S2p peak heights greatly decreased when microwave irradiation was performed for more than 5 min. In the EPDM sample irradiated with microwaves for 10 min, the number of S-O bonds significantly increased owing to oxidation. As the microwave irradiation time was increased, SEM images showed cracks and voids on the EPDM surface. The 20% decomposition temperature of the EPDM rubber sample was investigated by TGA, and it was found to be about $435.23^{\circ}C$ for the EPDM rubber irradiated for 10 min. The crosslinking density of the EPDM rubber was determined by measuring the degree of swelling, and the highest value was observed for the E5 sample irradiated for 5 min. The degree of swelling of the E10 sample irradiated for 10 min was lower than that of the E5 sample. These results indicate that when irradiated with microwaves for more than a certain time, desulfurization occurs and the side chain of the EPDM rubber dissociates and forms additional crosslinking bonds.

Evaluation of the Aging Life of the Rubber Pad in Power Window Switch

  • Kang, Yong Kyu;Choi, Byung Ik;Woo, Chang Su;Kim, Wan Doo
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.351-358
    • /
    • 2019
  • To evaluate the aging of a rubber pad in power window switch which is the part of a vehicle, the accelerated thermal aging test of rubber pad material is performed. Finite element analysis was performed using the nonlinear material constants of the rubber pad to calculate the operating force, and the Arrhenius relationship was derived from the aging temperature and time. The aging test was performed at 150, 180, 210, or 240 ℃ for 1 to 60 days. When the operating force of the rubber pad is changed by 10% from the initial value, the service life is expected to be 113 years, which is much longer than the life of the vehicle. This indicates that the aging life of the rubber pad is sufficiently safe and the operating force of the rubber pad during the life of the vehicle (20 years) was decreased by approximately 8.4%. By examining the correlation between the shear elastic modulus and operating force calculated from finite element analysis under each aging test condition, the changes in the operating force of the rubber pad and the shear elastic modulus showed good linear relationship. The aging life could be predicted by the change in shear elastic modulus and a process for predicting the aging life of automotive power window switch rubber pad parts is described herein.

Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH (ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae;Lee, Tae-Hui;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF

Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique (플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동)

  • 이억섭;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.158-165
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

A Study on the Ultraviolet Aging characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Y.S.;Lee, S.J.;Park, W.K.;Jeong, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1404-1406
    • /
    • 1998
  • The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged by various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation. high temperature and humidity as well as water spray. These the aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. the experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as $Al(OH)_3$ improves tracking resistance and the $TiO_2$ is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

Damping Characteristic of Silicone Rubber-Filled Honeycomb Sandwich Composite (Silicone Rubber-Filled 허니콤 샌드위치 복합재료의 댐핑 특성)

  • Joe Chee-Ryong;Hao Huang;Kim Dong-Uk
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.290-293
    • /
    • 2004
  • In this paper a new sandwich composite is developed by injection silicone rubber into the honeycomb core. This composite material is designed to have a improved damping performance. For verification damping tests were conducted to the specimens with different stacked USNl25 carbon/epoxy prepreg laminate facesheets, $[0/90]_{4s},\;[0/45-45/90]_{2s},\;[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our original material design concept.

  • PDF

A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact (고무보강 폴리머 재료의 저속 충격 해석)

  • 구본성;박명균;박세만
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF