• Title/Summary/Keyword: Ru Catalyst

Search Result 174, Processing Time 0.028 seconds

Study on Auto Ignition of Hybrid Rocket Using $N_2O$ Catalytic Decomposition ($N_2O$ 촉매 분해를 이용한 하이브리드 로켓 자연 점화 연구)

  • Yong, Sung-Ju;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.202-205
    • /
    • 2010
  • Auto ignition of hybrid rocket using $N_2O$ catalytic decomposition was studied in the present study. The hybrid rocket consists of catalytic igniter, solid fuel, combustor, and nozzle. The Ru/$Al_2O_3$ catalyst for $N_2O$ decomposition was synthesized by an impregnation method, and $N_2O$ conversion as reaction temperatures was measured. The temperature change of the catalytic ignitor was measured at the operating condition, and the possibility for the auto ignition of hybrid rocket was validated.

  • PDF

전이금속 (Ru$^{3+}$, Ni$^{2+}$, Cu$^{2+}$, Pd$^{2+}$)-Polyaza(N$_4$) 착물의 합성과 올레핀 산화반응에 대한 촉매적 활성

  • Park, Yu Cheol;Kim, Seong Su;Na, Hun Gil;Lee, Dong Cheol;Sin, Sang Hui;Byeon, Jong Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.295-301
    • /
    • 1994
  • The Ru(Ⅲ), Ni(Ⅱ), Cu(Ⅱ), and Pd(Ⅱ) complexes of N$_4$-polydentate ligands(meso-Me$_6$-[14]-ane, rac-Me$_6$-[14]-ane, and cyclam) have been prepared and their catalytic activity and selectivity in the oxidation of olefins in the presence of oxidant such as NaOCl, H$_2$O$_2$, t-BuOOH, and PhIO studied. The oxidations of cyclohexene, 1-hexene, cyclooctene, 1-octene, and styrene as substrates have been investigated gas chromatographically. The Ru(Ⅲ)-N$_4$ complexes showed high selectivity for epoxide in the catalyzed oxidation of olefins with NaOCl. The catalytic activities of Ru(Ⅲ)-N$_4$ complexes were discussed in terms of the flexibility of N$_4$-polydentate ligands, the Ru(Ⅲ)-Cl bond interaction and the steric effect of oxidants. The oxidation of 1-octene using PhIO as oxidant was carried out to verify. The Pd(Ⅱ) complex turned out to be more active catalyst than the Ni(Ⅱ) complexes.

  • PDF

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Application of Graphite Nano-fiber as a supporting material in the DMFC (직접 메탄올 연료전지에서 담지체로서의 GW 응용)

  • Park In Su;Park Gyeong Won;Choi Jong Ho;Kim Yeong Min;Jeong Du Hwan;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.197-200
    • /
    • 2002
  • The electrooxidation of methanol was studied using carbon-supported PtRu(1:1) alloy nanoparticles In sulfuric acid solution for application to a direct methanol fuel cell. The GNF-supported catalyst showed excellent catalytic activities compared to those of Vulcan XC-72. The structure and electrocatalytic activity of carbon-supported electrocatalyst were investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The CV and CA confirmed the advantage of GNF as the supporting material. This can be explained by assuming that the enhanced activities of GNF-supported catalyst for methanol electrooxidation were caused by the unique properties of GNF.

  • PDF

A Study on the Production of Hydrogen by 2-Propanol Dehydrogenation (2-프로파놀의 탈수소화에 의한 수소제조 연구)

  • Sim, Kyu-Sung;Kim, Jong-Won;Kim, Youn-Soon;Park, Ki-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 1995
  • Chemical heat pump is one of the energy conversion technologies, which enables to use waste heat as a source of high grade heat. In 2-propanol/acetone system, the dehydrogenation of 2-propanol is an endothermic(heat absorption) reaction, and can be used to generate hydrogen because 2-propanol can be converted to acetone and hydrogen at low temperature(about $8^{\circ}C$) using catalyst. For the dehydrogenation of 2-propanol 5% Ru catalyst based on activated carbon is the best one at the reaction temparature of $83^{\circ}C$.

  • PDF

Anodic surface treatment for the fabrication of catalyst-doped TiO2 nanotubes (전기화학적 표면처리를 이용한 촉매가 도핑된 TiO2 나노튜브의 제조)

  • Yu, Hyeon-Seok;Seong, Mi-Jeong;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.266-267
    • /
    • 2014
  • $TiO_2$ 기반의 DSA 전극에 촉매제를 동시에 도핑할 수 있는 양극산화 단일 공정을 연구하였다. 에틸렌 글리콜 용매하에 $KRuO_4$$NH_4F$를 전해질로 사용하여 타이타늄을 양극산화 할 때 도핑과 나노구조 제어를 동시에 수행할 수 있었다. TEM과 XPS 분석 결과, 균일한 Ru 산화물이 $TiO_2$ 구조 내에 분포함을 확인할 수 있었다.

  • PDF

MEMS based on nanoparticle gas sensor for air quality system (유해가스 차단시스템용 MEMS 가스 센서)

  • Lee, Eui-Bok;Park, Young-Wook;Hwang, In-Sung;Kim, Sun-Jung;Cha, Jun-Gho;Lee, Ho-Jun;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • In this study, nanopower ZnO and $SnO_2$ as sensing materials were prepared by hydrazine and hydrothermal routes, respectively, and were doped with Pd, Ru catalyst. The CO and $NO_2$ sensors were fabricated by coating of sensing materials on the MEMS-based structure with electrodes and heaters. The 0.1 wt% Pd doped $SnO_2$ sensor and Ru doped ZnO sensor showed the high sensor response to CO 30 ppm and $NO_2$ 1 ppm, respectively. The sensor signal was stable. This can be used for the detection of pollutant gases emitted from gasoline engine.

  • PDF

Control of Metal-Oxide Nanostructures for $H_{2}-Alcohol$ Fuel Cells (수소-알코올연료전지를 위한 금속-산화물 나노구조제어)

  • Park, Kyung-Won;Song, You-Jung;han, Sang-Beom;Lee, Jong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.141-145
    • /
    • 2007
  • Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuel cells (DMFCs). Since pure platinum is readily poisoned by CO, a by-product of methanol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalysts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were designed by chemical synthesis and thin-film technology, and were characterized by a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with $2^{nd}$ metal (e.g., Ru) as well as the metallic state and optimum portion of Ru element in the anode catalyst contribute to an enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified electronic properties of platinum in Pt alloy electrodes as well as the surface and bulk structure of Pt alloys with a proper composition could be attributed to a higher catalytic activity for methanol electooxdation. Proton conducting contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (Spillover effect). Finally, we confirmed the ensemble effect, which combined all above effects, in Pt-based nanocatalsyts especially, such as PtRuRhNi and $PtRuWO_{3}$, contribute to an enhanced catalytic activity.

  • PDF

Autothermal Reforming Reaction of Methane using Ni-Ru/$Al_2O_3$-MgO Metallic Monolith Catalysts (Ni-Ru/$Al_2O_3$-MgO 금속 모노리스 촉매체를 이용한 메탄의 자열 개질반응)

  • Lee, Chang-Ho;Lee, Tae-Jun;Shin, Jang-Sik;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2011
  • The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/$CeO_2-ZrO_2$, Ni/$Al_2O_3$-MgO and Ni-Ru/$Al_2O_3$-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio($O_2/CH_4$, $H_2O/CH_4$). The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing $O_2/CH_4$ ratio. Among the catalysts used in the experiment, the Ni-Ru/$Al_2O_3$-MgO catalyst showed the highest activity. The 60% of $CH_4$ conversion was obtained, and th e reactor temperature was maintained $600^{\circ}C$ at the condition of GHSV=$10000h^{-1}$ and feed ratio S/C/O=0.5/1/0.5.