• 제목/요약/키워드: Rrobot control

검색결과 2건 처리시간 0.022초

로봇 메니플레이터의 혼합 추적 제어를 위한 강인 가변구조제어기 (A Robust Variable Structure Controller for the Mixed Tracking Control of Robot Manipulators)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1908-1913
    • /
    • 2010
  • In this paper, a robust variable structure tracking controller is designed for the mixed tracking control of highly nonlinear rigid robot manipulators for the first time. The mixed control problem under consideration is extended from the basic tracking problem, with the different initial condition of both the planned trajectory and link of robots. This control problem in robotics is not addressed to until now. The tracking accuracy to the sliding trajectory after reaching is analyzed. The stability of the closed loop system is investigated in detail in Theorem 2. The results of Theorem 2 provide the stable condition for control gains. Combing the results of Theorem 1 and Theorem 2 gives rise to possibility of designing the improved variable structure tracking controller to guarantee the tracking error from the determined sliding trajectory within the prescribed accuracy after reaching. The usefulness of the algorithm has been demonstrated through simulation studies on the mixed tracking control of a two.link robot under parameter uncertainties and payload variations.

계층적 모델링에 의한 두 팔 로봇의 상호충돌방지 실시간 경로제어 (Hierarchical Model-based Real-Time Collision-Free Trajectory Control for a Cual Arm Rrobot System)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.461-468
    • /
    • 1997
  • A real-time collision-free trajectory control method for dual arm robot system is proposed. The proposed method is composed of two stages; one is to calculate the minimum distance between two robot arms and the other is to control the trajectories of the robots to ensure collision-free motions. The calculation of minimum distance between two robots is, also, composed of two steps. To reduce the calculation time, we, first, apply a simple modeling technique to the robots arms and determine the interested part of the robot arms. Next, we apply more precise modeling techniques for the part to calculate the minimum distance. Simulation results show that the whole algorithm runs within 0.05 second using Pentium 100MHz PC.

  • PDF