• Title/Summary/Keyword: Roundness Accuracy

Search Result 71, Processing Time 0.028 seconds

Optimization of Round Bar Forging Process by Using Finite Element Analysis (유한요소해석을 이용한 환봉 단조공정 최적화)

  • 최성기;천명식;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.142-147
    • /
    • 2004
  • Three-dimensional rigid-plastic finite element analysis has been performed to optimize open die forging process to make round bar. In the round bar forging, it is difficult to optimize process parameters in the operational environments. Therefore in this study, finite element method is used to analyze the practice of open die forging, focusing on the effects of reduction, feeding pitch and rotation angle for optimal forging pass designs. The soundness of forging process has been estimated by the smoothness and roundness of the bar at various combination of feeding pitches and rotation angles. From the test result, process conditions to make round bar having precise dimensional accuracy have been proposed.

The Development of An Error Measurement System of 5-Axis Mill & Turn Machine Tool by Double Ball Bar Test (DBB를 이용한 5축 복합가공기의 오차 측정 시스템 개발에 관한 연구)

  • Kim T.H.;Jung Y.G.;Ko H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.243-244
    • /
    • 2006
  • In this paper, the development of an error measurement system of 5-axis mill & turn machine tool presented by double ball bar test, which has been widely used to measure the overall accuracy of machining center. and the reliability of an error measurement system of 5-axis mill & turn machine tool was secured by the direct cutting test.

  • PDF

Development of a new injection mold structure for internal gears (새로운 내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Youn-Suk;Je, Deok-Keun;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.129-133
    • /
    • 2008
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF

A digital measurement method for rotational errors of a machine spindle (스핀들 회전 오차 측정의 디지틀 방법에 관한 연구)

  • 공인복;박윤창;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.443-450
    • /
    • 1989
  • A digital testing method for measurement of radial error motions of a spindle is investigated with special emphasis on developing a computer-aided in-situ inspection for machine tool manufacturing. The method utilizes three non-contact type probes and an optical encoder, based on a special computational algorithm to eliminate undesirable offset and roundness errors of the master spindle. Details of the design of hardware and software required to realize the testing method are described. Finally, advantages and limitations of the method are discussed with several test results.

원통형 커패시턴스 센서를 이용한 초정밀 공기 주축의 회전오차 측정

  • 김해일;박상신;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.637-642
    • /
    • 1995
  • For measuring the error motion of ultra-precision spindle, eliminating the geometric errors is a must. Unless it is achieved, geometric errors will be dominant in data. Here, the roundness error and alignment error between spindle and sensor are to be removed. That's because typical error range of such spindle is muchless than geometric one. A capacitive transducer of cylidricalshape was developed, which takes full advantage of the spatial-averaging effect by using large area compared tpo the geometric error. This idea was first proposed by Chapman and here it is modified for better performance with nomical gap of 50 .mu. m and with newly designed guards which encompass the respective sensor to rectify the electrical field distribution in good shape. The measurement system is made to get the orbit of Ultra-Precision Air Spindle which is supposed to have its runout under 1 .mu. m. The Calibration data of this sensor is presented and the spindle orbit from 2000rpm to 5500rpm is showed. It is quite reasonable to use this sensor in the range of 60 .mu. m with an accuracy of several tens of nm.

Fabrication of the Micro Nozzle Arrays on a Stainless Steel Sheet Metal by Using Combined Micro Press and Surface Finishing Process (복합공정을 이용한 스테인레스 박판 마이크로 노즐 어레이 제작)

  • Park S.J.;Yoo Y.S.;Jang H.S.;Kim Y.T.;Kim S.Y.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1294-1298
    • /
    • 2005
  • In this study, combined micro press and surface finishing process are proposed to fabricate the micro nozzle array on a stainless steel sheet metal. In micro hole punching process the burr occurs inevitably, but the burr must be minimized in order to improve the quality and accuracy of the product. For this reason, subsequent magnetic field-assisted finishing technique is applied to remove the burr which exists around the nozzles for ink-jet printer head and proved to be a feasible for deburring by experiment. The deburring characteristics of sheet metals were investigated changing with polishing time and magnetic abrasive size. After the deburring, the burr size has remarkably reduced and roundness of the hole also has improved.

  • PDF

A Fundamental Study on the Internal Grinding of Tungste Carbide Materials for Metal Mould to Improve the Machining Performance (금형용 초경합금재의 내면연삭 가공능률향상에 관한 기초적 연구)

  • 허성중;이규천;김영일;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.39-43
    • /
    • 1996
  • This paper described on the effect of residual stocks in internal grinding of tungsten carbide materials in order to improve the grinding efficiency as well as grinding accuracy. Though the fundamental investigation is carried out for tungsten carbide materials using electroplated diamond wheel, the residual stock after grinding process is effective to the grinding effciiency. The obtained results are as follows: (1) Under the depth of cut(t) is constant and decreasing the workpiece velocity(Vw), the resiudal stock after grinding is increased, but the difference is little less than the difference by table speed. (2) Increasing the wheel velocity, the residual stock after grinding is decreased. Therefore in order to minimize the residual stock, the wheel velocity should be increased as far as possible. (3) The surface foughness and out-of roundness increased with depth of cut and table speed, and decreased with wheel velocity, but it may as well adopt as much as polssible under the dimensional tolerance which is required for high efficiency grinding. (4) In order to remove residual stock, the spark-out grinding shoule be done, and it also can be improved about 20 .approx. 25% throughout spark-out grinding, and the number of optimal spark-out times were within 10 times.

  • PDF

A Study on the Internal Grinding of Tungsten Carbide Materials to Improve the Machining Performance (초경합금재의 내면연삭에서 가공능률 향상에 관한 연구)

  • Heo, Seoung Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • This paper described on the effect of residual stocks in internal grinding of tungsten carbide materials in order to improve the grinding efficiency as well as grinding accuracy. Through the fundamental investigation is carried out for tungsten carbide materials using electroplated diamond wheel, the residual stock after grinding process is effective to the grinding efficiency. The obtained results are as follows: (1) Under the depth of cut(t) is constant and decreasing the workpiece velocity(Vw), the residual stock after grinding is increased, but the difference is little less than the difference by table speed. (2) Increasing the wheel velocity, the residual stock after grinding is decreased. Therefore in order to minimize the residual stock, the wheel velocity should be increased as far as possible. (3) The surface roughness and out-of roundness increased with depth of cut and table speed, and decreased with wheel velocity, but it may as well adopt as much as possible under the dimensional tolerance which is required for high efficiency grinding. (4) In order to remove residual stock, the spark-out grinding shoule be done, and it also can be improved about 20~25% throughout spark-out grinding, and the number of optimal spark-out times were within 10 times.

  • PDF

Development of Grading and Sorting System of Dried Oak Mushrooms via Color Computer Vision System (컬러 컴퓨터시각에 의거한 건표고 등급 선별시스템 개발)

  • Kim, S.C.;Choi, D.Y.;Choi, S.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.130-135
    • /
    • 2007
  • An on-line real time grading and sorting system for dried oak mushrooms was developed for on-site application. Quality grades of the mushrooms were determined according to an industrial specification. Three dimensional visual quality features were used for the grading. A progressive color computer vision system with white LED illumination was implemented to develop an algorithm to extract external quality patterns of the dried oak mushrooms. Cap (top) and gil (stem) surface images were acquired sequentially and side image was obtained using mirror. Algorithms for extracting size, roundness, pattern and color of the cap, thickness, color of the gil and amount of rolled edge of the dried mushroom were developed. Utilizing those quality factors normal and abnormal ones were classified and normal mushrooms were further classified into 30 different grades. The sorting device was developed using microprocessor controlled electro-pneumatic system with stainless buckets. Grading accuracy was around 97% and processing time was 0.4 s in average.

Artificial Neural Network System in Evaluating Cervical Lymph Node Metastasis of Squamous Cell Carcinoma (편평세포암종 임파절 전이에 대한 인공 신경망 시스템의 진단능 평가)

  • Park Sang-Wook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.149-159
    • /
    • 1999
  • Purpose: The purpose of this study was to evaluate cervical lymph node metastasis of oral squamous cell carcinoma patients by MRI film and neural network system. Materials and Methods: The oral squamous cell carcinoma patients(21 patients. 59 lymph nodes) who have visited SNU hospital and been taken by MRI. were included in this study. Neck dissection operations were done and all of the cervical lymph nodes were confirmed with biopsy. In MR images. each lymph node were evaluated by using 6 MR imaging criteria(size. roundness. heterogeneity. rim enhancement. central necrosis, grouping) respectively. Positive predictive value. negative predictive value. and accuracy of each MR imaging criteria were calculated. At neural network system. the layers of neural network system consisted of 10 input layer units. 10 hidden layer units and 1 output layer unit. 6 MR imaging criteria previously described and 4 MR imaging criteria (site I-node level II and submandibular area. site II-other node level. shape I-oval. shape II-bean) were included for input layer units. The training files were made of 39 lymph nodes(24 metastatic lymph nodes. 10 non-metastatic lymph nodes) and the testing files were made of other 20 lymph nodes(10 metastatic lymph nodes. 10 non-metastatic lymph nodes). The neural network system was trained with training files and the output level (metastatic index) of testing files were acquired. Diagnosis was decided according to 4 different standard metastatic index-68. 78. 88. 98 respectively and positive predictive values. negative predictive values and accuracy of each standard metastatic index were calculated. Results: In the diagnosis of using single MR imaging criteria. the rim enhancement criteria had highest positive predictive value (0.95) and the size criteria had highest negative predictive value (0.77). In the diagnosis of using single MR imaging criteria. the highest accurate criteria was heterogeneity (accuracy: 0.81) and the lowest one was central necrosis (accuracy: 0.59). In the diagnosis of using neural network systems. the highest accurate standard metastatic index was 78. and that time. the accuracy was 0.90. Neural network system was more accurate than any other single MR imaging criteria in evaluating cervical lymph node metastasis. Conclusion: Neural network system has been shown to be more useful than any other single MR imaging criteria. In future. Neural network system will be powerful aiding tool in evaluating cervical node metastasis.

  • PDF