• 제목/요약/키워드: Rounded edge model

검색결과 12건 처리시간 0.023초

Rounded-edge 슬라이더를 이용한 하드디스크의 표면 스크래치 저감에 관한 연구 (Study on Scratch Reduction of HDD using Rounded-edge Slider)

  • 신일섭;김영태;한제희;김대은;강태식
    • 정보저장시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.184-188
    • /
    • 2006
  • In recent years the flying height of the head/slider has been decreasing in order to increase the recording density of hard disk drive (HDD). Accordingly, it was predicted that direct contact between slider and disk surface (slider slap) can cause defects on the disk such as scratch and particle generation. In this work, we theoretically demonstrate the effect of rounded-edge slider using Hertzian contact theory. Depth and width of scratch were predicted by plowing model. Furthermore, as we fabricated rounded-edge slider, rounded-edge slider was tested and compared with sharp-edge slider. The experimental results show rounded-edge was effective for reducing scratch depth.

  • PDF

여러 가지 쾌속조형 방식의 경사면 거칠기 특성 (Characteristics of Roughness of Inclined Surface Fabricated by Various Rapid Prototyping Processes)

  • 김기대
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.48-54
    • /
    • 2007
  • Surface of rapid prototype has inevitably stair-stepping error, which is attributed to the continuous building process of 2 dimensional area. In this study, rounded edge model was established to estimate the roughness of inclined surface which has stair-stepping error. To investigate the roughness of rapid prototypes, specimens that have various surface inclinations were manufactured by various types of RP machines. As the surface inclination increased, the roughness of the specimens manufactured by SL, FDM, or LOM process decreased, which coincides with the simulation results. However, surface roughness of 3DP specimen was almost independent of the inclination. Furthermore, as the angle of surface increased, roughness of poly-jet specimen also increased, which is attributed to the frictional behavior between writing head and scanned area.

일반화된 Hoek-Brown 모델의 정식화 및 Rounded Hoek-Brown 모델의 개발 (Formulation of Generalized Hoek-Brown Model and Development of Rounded Hoek-Brown Model)

  • 김범상;권오순;장인성
    • 한국지반공학회논문집
    • /
    • 제21권8호
    • /
    • pp.37-43
    • /
    • 2005
  • 암반의 거동을 예측하기 위해 1980년 발표된 Hoek-Brown 모델은 지속적인 개선과 더불어 수많은 문제들을 해결하기 위해 널리 사용되고 있다. 그러나 Hoek-Brown 모델의 유한요소법 등 수치해석에 대한 적용성에 관한 연구는 미미한 실정이다. 본 논문에서는 Hoek-Brown 모델을 일반적 소성론 절차에 따라 구성모델로 정식화하여 그 특징을 살펴보았고, 수치적 문제점을 유발하게 되는 항복면의 모서리부를 곡면으로 처리한 Rounded Hoek-Brown 모델을 제시하였다. 제안모델은 탄소성 구성모델로서의 요구조건들을 만족하며, 압축측에서 원래의 Hoek-Brown 모델과 동일한 항복면을 갖는다. 제안 모델을 일반적인 비선형 유한요소해석에 적용하기 위하여 제안 모델의 구성방정식을 수립하였다.

상악중절치에서 전부도재관의 finish line형태에 따른 파절강도와 응력 분포에 관한 연구 (THE FRACTURE RESISTANCE AND STRESS DISTRIBUTION OF ALL CERAMIC CROWNS WITH TWO TYPES OF FINISH LINE ON MAXILLARY CENTRAL INCISOR)

  • 기태석;김계순;이진한;김유리;동진근
    • 대한치과보철학회지
    • /
    • 제41권4호
    • /
    • pp.405-420
    • /
    • 2003
  • Purpose : The purpose of this study was to compare the fracture resistance of the IPS Empress ceramic crown with 1.0mm width rounded shoulder, which is usually recommended in all ceramic crown. and 0.5mm width chamfer finish lines on the maxillary central incisor. Material and method : After 15 metal dies were made for each group, the IPS Empress all ceramic crowns were fabricated and cemented with resin cement(Bistite resin cement, Tokuyama Soda Co. LTD., Japan) on the metal die. The cemented crowns were mounted on the positioning jig and the universal testing machine(Zwick Z020, Zwick Co. Germany)was used to measure the fracture strength with loading on the incisal edge. And also, three-dimensional finite element stress analysis was used to measure the stress distribution with the various types of the finish lines(1.0mm width rounded shoulder, 0.5mm width chamfer), the loading site(incisal edge, incisal $\frac{1}{3}$) and the type of loading(concentration loading, distribution loading). Results and conclusion : 1. In the fracture resistance experiment according to the finish line, the mean fracture strength of rounded shoulder(876N) and the mean fracture strength of chamfer(882N) did not skew any significant difference between each other(p>0.05). 2. The stress distribution of all ceramic crown in three dimensional finite element analysis showed concentration aspect at loading point and cervical area or labial surface. 3. In metal die, there were no differences in stress distribution between finish lines, but in natural teeth model, chamfer finish line showed higher stress than rounded shoulder finish line. 4. When force was loaded on the incisal edge the stress was concentrated on the incisal edge and the cervical area of labial surface. When force was loaded on the incisal $\frac{1}{3}$, the stress concentrated on the cervical area of labial surface and the cingulum area. 5. Generally, natural teeth model showed higher and various stress than the metal die.

취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향 (The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials)

  • 김주현
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

공구끝단에서의 정체점에 관한 유한요소해석 (A Finite Element Analysis of the Stagnation Point on the Tool Edge)

    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.901-904
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a flew manometer. In such case, a basic understanding of the mechanism on the micro-machining process is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

  • PDF

초정밀 절삭에 있어서 임계절삭깊이에 대한 연구 (A Study on the Critical Depth of Cut in Ultra-precision Machining)

  • 김국원
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.126-133
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a few nanometer. In such case, a basic understanding of the mechanism on the micro-machining process is is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

타원형 익형의 공력특성에 관한 수치적 연구 (A Numerical Study About the Aerodynamic Characteristics of Elliptic Airfoils)

  • 최성윤;권오준
    • 한국항공우주학회지
    • /
    • 제34권2호
    • /
    • pp.1-10
    • /
    • 2006
  • 본 연구에서는 수치적 방법을 이용하여 타원형 익형의 공력특성에 대한 연구를 수행하였다. 타원형 익형의 경우 현재까지 널리 사용되어진 NACA 계열 익형들에 비하여 작은 앞전 곡률반경을 가진다. 또한 NACA 계열 익형들과는 달리 앞전과 같은 곡률반경을 가지는 뒷전 형상을 가지며, 익형의 최대 두께가 시위의 1/2지점에 존재한다. 타원형 익형의 경우 이러한 형상적인 특징들에 의하여 NACA 계열 익형들과는 다른 공력특성을 나타내는데, 본 연구에서는 같은 최대 두께를 가지는 NACA 계열 익형과 타원형 익형의 다양한 유동조건에서의 공력특성에 대한 수치해석 결과의 비교를 통하여 타원형 익형의 공력특성에 대하여 살펴보았다. 또한 타원형 익형의 두께변화에 따른 공력특성의 변화 역시 함께 고려하였다.

Numerical simulation of aerodynamic characteristics of a BWB UCAV configuration with transition models

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.8-18
    • /
    • 2015
  • A numerical simulation for a nonslender BWB UCAV configuration with a rounded leading edge and span of 1.0 m was performed to analyze its aerodynamic characteristics. Numerical results were compared with experimental data obtained at a free stream velocity of 50 m/s and at angles of attack from -4 to $26^{\circ}$. The Reynolds number, based on the mean chord length, is $1.25{\times}106$. 3D multi-block hexahedral grids are used to guarantee good grid quality and to efficiently resolve the boundary layer. Menter's shear stress transport model and two transition models (${\gamma}-Re_{\theta}$ model and ${\gamma}$ model) were used to assess the effect of the laminar/turbulent transition on the flow characteristics. Aerodynamic coefficients, such as drag, lift, and the pitching moment, were compared with experimental data. Drag and lift coefficients of the UCAV were predicted well while the pitching moment coefficient was underpredicted at high angles of attack and influenced strongly by the selected turbulent models. After assessing the pressure distribution, skin friction lines and velocity field around UCAV configuration, it was found that the transition effect should be considered in the prediction of aerodynamic characteristics of vortical flow fields.

천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석 (CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect)

  • 조영희;장경식;신동진;박수형
    • 한국항공우주학회지
    • /
    • 제42권7호
    • /
    • pp.535-543
    • /
    • 2014
  • 비세장형, 둥근 앞전을 가지고 스팬이 1.0m로 축소된 BWB형 UCAV에 대해 완전난류, 천이 모델을 사용하여 전산해석을 수행하였다. 자유류는 받음각 -4도부터 26도까지 50m/s이며, 평균 시위 기준 레이놀즈수는 $1.25{\times}10^6$이다. 멀티블록 6면체 격자와 함께 완전난류 모델과 천이 모델의 결과를 비교하여 천이효과가 공력 특성에 미치는 영향을 살펴보았다. 풍동 실험과 비교한 결과 양/항력 계수는 해석범위 내에서 잘 일치하였으며, 피칭 모멘트는 높은 받음각에서 작게 예측됨과 동시에 난류모델에 따라 결과가 크게 달라졌다. 압력분포와 skin friction line, 축 방향 속도장을 이용하여 와류구조의 거동과 천이현상이 미치는 영향을 살펴본 결과, 천이효과를 고려하는 것이 UCAV의 정확한 와류 구조와 공력특성 예측에 필요한 것으로 확인하였다.