• Title/Summary/Keyword: Round jet

Search Result 82, Processing Time 0.024 seconds

The Profile of Milling Plants in Korea (우리나라 양곡가공공장의 현황분석)

  • 정창주;금동혁;강화석
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.47-63
    • /
    • 1978
  • This study was conducted to obtain a basic information necessary to assess present rice milling technology in Korea The profiles for milling plants was analyzed by survey work.For the private custom-work mills, which process about 80 percent of domestic rice consumption ,their actual milling test for the identical samples as used for filed mills was conducted. Two rice varieties Japonica and Tongil-type were associated with the experiments. The results are summarized as follows: 1. Analyses for private custom-work mills showed their general aspects as; about 91 percent of the mills belonged to an individual owner ship ; more than 93 percent of the mills was established earlier than 1950 ; about 80 percent of the mills was powered with electric motor; mills having less than two employees were about 75 percent; about 45 percent of the mills provided for warehouse in storing customers cereal grains. 2. The polishers installed in 1,255mills within the surveyed area (7 counties) have been supplied by 44 different domestic manufacturers ;in but about 60 percent of which was supplied by 6major manufacturers. The polishers could be classified into two categories in terms of principles of their polishing actions ;jet-pearler and friction types. About 51 percent of the mills was equipped with the former which has been recognized as giving greater milling recovery than the friction types. 3. Reason for owners of private mills to supplement new machines was due mainly to pgrading their mills to meet the requirements that established by the Government. However, about 60 percent of the mill owners intended to replace with new pearler by their own needs to meet with new high yielding varieties. 4. Processing systems of each previate rice mills surveyed could be classified into three categories, depending upon whether the systems posessed such components as precleaner and paddy separator or not. Only 36.7 percent of mills was installed with both precleanr ad paddy seperrator, 5.0 percent of mills did have neither percleaner nor paddy seperator, and rest of them equipped only one of the two. Hence,it is needed for about 63% of rice miils to be supplemented with these basic facilities to meet with the requirements for the standaized system. 5. Actual milling capacity measured at each field rice mills was shown a wide variation, having range from about 190 to 1,210 kg/hr. The percentages of mills classified according to daily milling capacity based on this hourly capacity were 24.3% for the capacity less than 3 M/T a day; 20.0% for 3-4 M/T; 15.6% for 4-5 M/T; 6.7% for 5-6 M/T; 22.3% for 6-7 M/T; and 11.0% for more than 7 M/T a day. 6. Actual amount of rice processed was about 310 M/T a year in average. About 42% of total milled rice was processed during October to Decembear, which formed a peak demand period for rice mills. The amount of rice milled during January to May was relatively small, but it had still a large amount compared to that during June to September. 7. Utilization rate of milling facility, i. e., percentage of the actual amount of milled rice to the capacity of rice mills, was about 18% on the year round average, about 41% in the peak demand season, and about 10% during June to September. Average number of operating days for mills surveyed was about 250 days a year, and about 21 days a month. 8. Moisture contents of paddy at the time of field mill tests were ranged 14.5% to 19.5% for both Japonica and Tong-i] varieties, majority of paddy grains having moisture level much higher than 1530. To aviod potential reduction of milling recovery while milling and deterioration of milled rice while storage due to these high grain mJisture contents, it may be very important for farmers holding rice to dry by an artificial drying method. 9. Milling recovery of JapJnica varieties in rice mills was 75.0% in average and it was widely ranged from 69.0% to 78.0 % according to mills. Potential increase in milJing recovery of Japonica variety with improvement of mill facilities was estimated to about 1.9%. On the other hand, milling recovery of Tong-il varieties in the field mill tests was 69.8% in average and it ranged from 62% to 77 %, which is much wider than that of Japonica varieties. It is noticed that the average milling recovery of Tong-il variety of 69.8% was much less than that of the Japonica-type. It was estimated th3.t up to about 5.0% of milling recovery for Tong-il variety could be improved by improving the present lo'.ver graded milling technology. 10. Head rice recoveries, as a factor of representing the quality of commercial goods, of Japonica and Tong-il varieties were 65.9% and 53.8% in average, and they were widely ranged from 52% to 73% and from 44% to 65% , respectively. It was assessed that head rice recovery of Japonica varieties can be improved up 3.3% and that of Tong-il varieties by 7.0% by improving mill components and systems.

  • PDF

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF