• Title/Summary/Keyword: Round jet

Search Result 82, Processing Time 0.024 seconds

Quantitative Visualization of Dissolved Oxygen Concentration Field in Micro Flows using PtOEP/PS Membrane (마이크로 유동에서 PtOEP/PS 박막을 이용한 용존 산소 농도장의 정량적 가시화)

  • Song, Dae-Hun;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • It is highly needed to measure the dissolved oxygen (DO) concentration field in water for a variety of purposes such as biological, industrial, environmental monitoring and medical application. Application of PSP (Pressure Sensitive Paint) which is sensitive to oxygen concentration has been carried out to measure DO concentration field using PtOEP/PS film and intensity based method under the UV-LEDs illumination. A micro round water jet having 100% of DO was obliquely impinged on to a PtOEP/PS film coated plate placed in a 0% of DO water container. DO concentration fields on the impinging plate were quantitatively visualized with a $2.94\;{\mu}m$ of spatial resolution. Through pixel-by-pixel calibration, uncertainty of each pixel by different sensitivity, different dye concentration and non-uniformity of illumination was removed. It is demonstrated that the high DO concentration region was coincided with the impingement area. The DO concentration gradient due to DO diffusion was affected by Reynolds number.

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

Study on the statistical turbulence characteristics of cross jets in the cylinder by on-line computer system (온라인 컴퓨터 시스템에 의한 실린더내 충돌분류의 통계학적 난류특성 연구)

  • 노병준;박종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.876-891
    • /
    • 1988
  • This study was carried out to investigate the mixing flow of a turbulent cross jet in a cylindrical chamber. A study on the turbulent mixing flow of a cross jet at 45.deg. with respect to each other in the free atmospheric condition was conducted before this study and has given us some fundamental experimental results. Present data have been analyzed and compared with semi-empirical equations for a round and a plane jets. Interests on this kind of cross jets (flows) have been increasing during the past several years for the purpose of the analysis of mixing flows and their applications. In this study, a turbulent cross jet of air in a cylindrical chamber has been conducted and the turbulent characteristics in the mixing region have been analyzed experimentally. The experimental data were discussed by comparing with the semi-empirical equations of Hinze and Gortler. From the experimental curve, the semi-empirical equations of mean velocities and Reynolds stresses have been derived. Three dimensional data acquisitions and the statistical treatments of turbulence characteristics were carried out by on-line computer measurement system connected with the constant temperature type 2-channel hot-wire anemometer system.

Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps (디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구)

  • Kim, Dong-Hun;Park, Tae-Hyung;Heo, Jeong-Yun;Ryu, Seung-Hyup;Kang, Sang-Lip
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

Behavior of Neutrally Buoyant Round Jet in Wave Environment (파랑수역으로 방류되는 비부력 원형 제트의 거동)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2120-2124
    • /
    • 2007
  • 본 연구에서는 천해역에서 수평 방향으로 방류되는 비부력 원형 난류제트에 대한 수리모형실험을 수행하여, 파랑이 제트의 확산에 미치는 영향을 검토하였다. 수리모형실험시 대상 파랑은 진폭이 작은 규칙파를 적용하였으며, 난류제트의 순간적인 유속장은 입자화상유속계(particle image velocimetry, PIV)기법을 이용하여 측정하였다. 평균유속장은 PIV기법으로 측정된 순간유속장을 위상평균하여 계산하였으며, 파의 진폭을 변화시키며 실험을 수행하였고, 파의 진폭변화에 따른 제트의 유속분포로부터 제트의 중심선과 제트단면을 추정하였다. 제트의 중심선속도는 파의 진폭이 증가함에 따라 중심선속도의 감소 시점이 빨라졌으며, 제트의 횡단면분포의 고유특성인 자기상사성(self-similarity)이 단계적으로 사라졌다. 제트 중심선의 속도와 제트 유속 단면은 제트의 확산정도를 알 수 있는 중요한 인자로서 파랑 진폭의 크기에 따른 이들 인자의 변화로부터 파랑의 분산이 난류제트의 확산현상에 미치는 영향을 알 수 있었다.

  • PDF

Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments (고압분위기에서 충돌제트로 형성되는 액막의 분열특성)

  • Jung, Ki-Hoon;Khil, Tea-Ock;Lim, Byoung-Jik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

DEEP-South: Round-the-clock Census of Small bodies in the Southern Sky

  • Moon, Hong-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Choi, Young-Jun;Bae, Young-Ho;Roh, Dong-Goo;Ishiguro, Masateru;Mainzer, Amy;Bauer, James;Byun, Yong-Ik;Larson, Steve;Alcock, Charles
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.56.3-57
    • /
    • 2015
  • As of early 2015, more than 12,000 Near-Earth Objects (NEOs) have been catalogued by the Minor Planet Center, however their observational properties such as broadband colors and rotational periods are known only for a small fraction of the population. Thanks to time series observations with the KMTNet, orbits, optical sizes (and albedo), spin states and three dimensional shapes of asteroids and comets including NEOs will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, their approximate surface mineralogy will also be characterized. This so-called DEEP-South (Deep Ecliptic Patrol of the Southern Sky) project will provide a prompt solution to the demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of the network of ground-based telescopes in the southern hemisphere. We will soon finish implementing dedicated software subsystem consisted of automated observation scheduler and data pipeline for the sake of increased discovery rate, rapid follow-up, timely phase coverage, and efficient data analysis. We will give a brief introduction to test runs conducted at CTIO with the first KMTNet telescope in February and March 2015 and experimental data processing. Preliminary scientific results will also be presented.

  • PDF

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip (오리피스 내부 유동조건에 따른 수직분사제트의 분열특성에 대한 연구)

  • 안규복;김정훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.72-75
    • /
    • 2003
  • In this research, we focused on the effects of the orifice internal flow such as cavitation and hydraulic flip. The breakup characteristics such as the breakup length and trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance to provide a lot of conditions of the orifice internal flow. It is found that cavitation bubbles that occur inside the sharp-edged orifice make the liquid jet ejecting from the orifice turbulent. In the orifices (L/d = 5), the hydraulic flip phenomenon is shown when the injection pressure is high. In case cavitation occurs it breaks up more earlier than that in case of non-cavitation. In case hydraulic flip occurs, since the area of the liquid jet becomes small, the breakup length is also small as that in case of cavitation. But the liquid column trajectories have a similar tendency irrespective of cavitation.

  • PDF

Optical Observation of Cavitation Phenomena in Diesel Fuel Injection Pumps (디젤 엔진 연료 분사 펌프 캐비테이션 현상의 가시화 연구)

  • Ryu, Seung-Hyup;Kim, Dong-Hun;Kim, Byung-Seok;Park, Tae-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.460-467
    • /
    • 2011
  • Cavitation phenomena during the spill process of the Bosch type fuel injection pump for medium-speed diesel engine were investigated by optical observations. Typically, these phenomena can cause a surface damage with material removal or round-off at the plunger and barrel port etc., and may shorten their expected life time. The images, which were recorded with high speed CCD camera and borescope, show that the plunger damage is mainly affected by fountain-like cavitation generated before the end of delivery. And the damages of barrel port and deflector are caused by jet-type cavitation generated after end of delivery.