• Title/Summary/Keyword: Round jet

Search Result 82, Processing Time 0.023 seconds

Experimental Study on Turbulent Characteristics of Axisymmetric Impinging Jet with a Modified Initial Condition (초기조건의 변형에 따른 축대칭 충돌분사류의 난류특성에 대한 연구)

  • 한용운;이근상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3166-3178
    • /
    • 1993
  • The turbulent flow characteristics of impinging jet have been investigated by the hot wire anemometry with a movable impinging wall. Turbulences were generated by the meshed jet as well as the typical round jet and their characteristics were compared, of mean velocity profiles, turbulent intensities. Reynolds stresses, similarities and their centerline flow behaviors. The meshed jet tends to make shear layer wider than the normal one in the initial region and the velocity profiles of the normal jet is rather contractive being compared with those of the meshed one near the wall. The effect of meshed exit appears only within 4D at the begining of jets and the cascading process of the meshed one marches more rapidly than that of the normal jet. The wall effects appear in the downstream of about 0.85 H to the impinging wall for every case of wall positions in both nozzles.

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

Heat Transfer Measurements by a Round Impinging Jet on a Rib-Roughened Flat Plate (표면조도를 가진 평판에서 원형충돌제트에 의한 열전달 측정)

  • Lee, Dae-Hee;Kim, Yun-Taek;Chung, Seung-Hun;Chung, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.87-92
    • /
    • 2000
  • This study is to investigate the heat transfer characteristics the for a round turbulent jet impinging on the flat plate with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made fur the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the rib type [height ($d_1$) 2mm, pitch (p) from 12 to 36mm]. It was found that for $L/d{\ge}6$ the average Nusselt numbers on the flat plate with rib type C ($p/d_1=16$) are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface.

  • PDF

The Study on the Phenomenon of Heat Transfer on a Downward Isothermal Circular Surface by an Impinging of Upward Circular Nozzle Jet (상향 원형노즐 제트에 의한 하향 등온 원형평면에서의 열전달 현상에 관한 연구)

  • Lee, In Jae;Eom, Yong Kyoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.450-457
    • /
    • 2016
  • While many studies on the heat transfer effect of an impinging jet have been published, most studies focus on the downward impinging jet. This study investigates the impinging jet heat transfer phenomenon when water at a temperature of $24^{\circ}C$ impinges on the downward isothermal circular plate at 60, 70, and $80^{\circ}C$ and when the upward round jet nozzle is 4, 6, and 8 mm diameter with a flow rate 3.6, 4.6, and 5.6 L/min, respectively, and when the ratio of the nozzle clearance/nozzle diameter (H/D) is 1. The results showed that, as the nozzle diameter decreases, the heat transfer coefficient increases at a constant flow rate. The correlation equation of $Nu_r$, $Pr_r$, and $Re_{jg}$ is obtained in the impinging and constant velocity flow region $(Nu_r/Pr^{0.4}_r)Dr=4.6[Re_{jg}(r/R_c)Dr]^{0.8}$ at all flow rates, in the deceleration and falling flow regions $(Nu_r/Pr^{0.4}_r)Dr=42.7{\mid}Re_{jg}(r/R_c)Dr-345.7{\mid}^{0.3}$ at 3.6 L/min, $(Nu_r/Pr^{0.4}_r)Dr=92.4{\mid}Re_{jg}(r/R_c)Dr-16.8{\mid}^{0.2}$ at 4.6 L/min, and $(Nu_r/Pr^{0.4}_r)Dr=322.4{\mid}Re_{jg}(r/R_c)Dr-536.2{\mid}^{0.01}$ at 5.6 L/min.

PROPAGATION PROCESSES OF NEWLY DEVELOPED PLASMA JET IGNITER

  • Ogawa, Masaya;Sasaki, Hisatoshi;Yosgida, Koji;Shoji, Hideo;Tanaka, Hidenori
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of a cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma Jet igniter configuration and combustion enhancement effects. In this newly developed plasma Jet igniter, flame front wrinkle appears on the flame front and flame propagates rapidly. Plasma Jet influences on the flame propagation far long period when the plasma jet igniter has issuing angle 90 degrees and large cavity volume, because the plasma jet only lasts several ms. However, in the early stage of combustion, flame front area of issuing angle 45 degrees is larger than that of 90 degrees, because the initial flame kernel is formed by the plasma jet.

The Study of Heat Transfer on a Heated Circular Surface by an Impinging, Circular Water Jet with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐 제트충돌에 의한 원형평판에서의 열전달 현상)

  • Kim, Ki-Tae;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.983-991
    • /
    • 2009
  • The heat transfer phenomenon was investigated in this study when a circular water jet with low velocity flows to the downward facing heated circular plate and against the direction of gravity. Data are presented for jet flow rate between 0.23 and 2.3 l/min, jet fluid temperature of 24$^{\circ}C$, heat fluxes between 345 and 687 W/m$^2$, H/D=1, 2 and 3 with a single round jet diameter 2mm. The effects of heat flux, jet velocity and H/D on the local heat transfer are investigated in for the various regions of jet impingement. The local heat transfer distributions are analyzed based on the visualization of jet flow field. Data from experimental results are correlated by expressions of the form Nu=0.01$Re^{0.58}{\cdot}Pr^{0.4}$.

Flow Characteristics of Axi-symmetric Swirl Jet in the Initial Regions (축대칭 회전분사류의 초기 유동특성)

  • Han, Yong-Un;An, Yeong-Hui;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.531-538
    • /
    • 2002
  • Flow characteristics of a round jet with swirl number of 0.17 have been investigated using a hot -wire anemometry in the initial region within 10D(exit diameter). Swirl effects were observed by comparing centerline flow characteristics, similarities and turbulent budgets of a swirl jet and a free jet, respectively. To obtain similarity of the radial profiles mean velocity and higher moments were measured at the vertical pl anes, located at 2.5, 5.0, 7.5D, 10D, respectively. The centerline velocity characteristics were also measured. It is turned out that similarities of mean and Reynolds stress are established. The jet boundary has wider width than that of a free jet and the shear stress also becomes stronger. In addition the centerline decay becomes faster than that of the free jet, indicating that the swirl induces more entrainment in the initial region of the swirl Jet by transferring the axial mean kinetic energy into the swirl energy and, therefore, has wider boundary, compared with that of free jet.

Concave surface curvature effect on heat transfer from a turbulent round impinging jet (오목표면곡률이 난류원형충돌제트의 열전달에 미치는영향)

  • Im, Gyeong-Bin;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • The effects of concave hemispherical surface curvature on the local heat transfer from a turbulent round impinging jet were experimentally investigated. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds number ranges from Re=11,000 to 50,000, the nozzle-to- surface distance from L/d=2 to 10, and the surface curvature from D/d=6 to 12.The present results are also compared to those for the flat plate case. In the experiment, the local Nusselt numbers tend to increase in all regions with an increasing surface curvature. The maximum Nusselt number for all Reynolds numbers occurred at L/d .ident. 6 and a second maximum in the Nusselt number occurred at R/d .ident. 2 for both Re=23,000 and Re=50,000 in the case of L/d=2 and for Re=50,000 only in the case of L/d=4. Meanwhile, as the surface curvature increases, the value of the secondary maximum Nusselt number decreases. All the other cases exhibit monotonically decreasing values of the Nusselt number along the curved surface. The stagnation point Nusselt numbers are well correlated with Re, L/d, and D/d.

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

Analysis of Velocity Structure of Round Wall Jet (원형바닥젵의 유속구조 해석)

  • Kim, Dae-Geun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.467-475
    • /
    • 1997
  • In this study, breakwater model which has several outlet pipes to discharge heated water is settled in the experimental open channel and velocity distribution of wall jet is measured. Numerical simulation of velocity structure of wall jet using 3-dimensional computer model. Fluent model, is also carried out. The calculated results are verified with the experimental results and the flow characteristics of wall jet are investigated. The length of zone of flow establishment of wall jet is shorter than that of free jet, and the diminution rate of jet centerline longitudinal velocity is larger than that of free jet. Characteristics of buoyant jet and non-buoyant simple jet simulated by Fluent model are compared. Near the outlet pipe, in the region where x/lQ is over 15, this is reversed. Comparison of vertical distribution of longitudinal velocity shows that positive velocity of non-buoyant jet is bigger than that of buoyant jet in the bottom layer and in the upper layer, negative velocity of non-buoyant jet is bigger too. Flow separation in free surface of the buoyant jet occurs in smaller distances from the outlet than the non-buoyant jet. Buoyant jet expands faster than the non-buoyant jet in vertical direction.

  • PDF