• Title/Summary/Keyword: Roughness Parameter

Search Result 278, Processing Time 0.033 seconds

The Study on the Dynamics and Friction Characteristics of Piston Skirt with Consideration of Mixed Lubrication

  • Kim, Ji-Young;Han, Dong-Chul;Cho, Myung-Rae;Choi, Jae-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.735-742
    • /
    • 2001
  • This paper reports on the dynamics and friction characteristics of piston skirt with consideration of mixed lubrication. Piston skirt is an important part of the engine that transforms fuel into mechanical energy. The durability and low friction characteristics are important recent issues in piston skirt design. In this paper, the piston skirt motion is analyzed with consideration of mixed lubrication and piston skirt tilting motion. The entire trajectory of piston motion is obtained by using transient numerical method. Also various parameter studies are performed for piston skirt design and the development of lower frictional engine.

  • PDF

Experiments on Single Phase Cooling Heat Transfer and Pressure Drop Characteristics in Microfin Tubes (마이크로휜관 내 단상 냉각 유동 열전달 및 압력 강하 특성에 관한 실험적 연구)

  • 이규정;한동혁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2002
  • Experiments on the single phase cooling heat transfer and pressure drop with microfin tubes were performed using water as a test fluid. Experimental data were obtained in the range of Reynolds number 3000 ~40000 and Prandtl number 4-6. The data of microfin tubes presented the characteristics of rough surface tube in pressure drop and heat transfer Experimental data were compared with the heat transfer and friction factor correlations of smooth tubes. Heat transfer enhancements of microfin tubes were lower than pressure drop penalty factors. The helix angle is more significant parameter in both of the pressure drop and heat transfer than the relative roughness. The correlations of Nusselt number and friction factor were suggested for the tested microfin tubes. Maximum deviations between correlations and experimental data were within $\pm15$% for Nusselt number and $\pm10$% for friction factor.

Study on the Design of End Mill Geometry for the High Speed Machining (고속 가공용 엔드밀의 형상설계에 관한 연구)

  • 이상규;배승민;고성림;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.67-70
    • /
    • 2001
  • The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter(rake angle, clearance angle, length of cutter) and cutting process(cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

Multi-signal characteristics for condition monitoring of micro machined surface (미세가공면의 상태 감시를 위한 다중신호특성에 관한 연구)

  • Jang, Su-Hoon;Park, Jin-Hyo;Kang, Ik-Soo;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • Micro-machining technology has been adopted for shape accuracy of micrometer and sub-micrometer scale, surface roughness of tens nanometer in industries. In micro-machining process the quality of machined surface is derived from machining condition and tooling. This paper investigates AE(acoustic emission) and cutting force signals according to machined surface quality related to machining condition. Machined surface quality was analyzed by the AE and cutting force parameter which reflect surface morphology. The characteristics of signal were extracted for process optimization by monitoring both the tool condition and the machined surface texture in micro end milling process.

  • PDF

Determination of Machining Parameters Considering Current Density in Three Dimensional Electrical Discharge Machining (3차원 방전가공에서 전류밀도를 고려한 방전가공조건 결정)

  • 이건범;김정두;최병훈;송희덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.100-106
    • /
    • 1999
  • Owing to the complexity of electrical discharge machining (EDM) phenomenon, it is very difficult to determine optimal machining parameters fer improving machining performance. This paper proposes a methodology for determining optimal electrical discharge machining parameters, which is maintaining suitable current density for increasing productivity or improving surface roughness. Machining area is closely related on optimal machining parameters in electrical discharge machining process, so calculation of machining area is needed in order to determine optimal machining parameters. In this study machining area, which is corresponding to the machining position, is calculated from intersection curves between the tool surface and a horizontal plane.

  • PDF

A Study on the prediction of Surface Roughness and Material Removal in Powder Blasting using Neural Network (신경회로망에 의한 분사가공공정의 표면거칠기 및 재료제거량 예측에 관한연구)

  • Kim Gwon-Heup;Yu U-Sik;Park Dong-Sam
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1350-1356
    • /
    • 2006
  • The old technique of sandblasting which has been used for paint or scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. In this paper, The surface characteristics of powder blasted glass surface were tested under different blasting parameter. Finally, we proposed a predictive model for powder blasting process using a neural network. A detailed analysis of the simulation results has been carried out and compared with experimental results.

  • PDF

Study of Cure Properties in Photopolymer for Stereolithography using Various Laser Bean Size (레이저빔 직경변화에 대한 광경화성 수지의 경화특성 고찰)

  • 이은덕;김준안;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1089-1092
    • /
    • 2001
  • In the stereolithography process, build parameters are laser power, scan velocity, scan width, bean diameter, layer thickness and so on. These values are determined according to product accuracy and build time. Build time can be reduced by improving of scan velocity, laser power, layer thickness, hatching space and so on. But variation of these parameters influence part accuracy, surface roughness, strength. This paper observed cure properties in various beam diameter. In order to examine these, relationships of scan velocity and cure depth, scan velocity and cure width according to various beam diameter in one scan line are measured. And cure thickness is measured according to beam diameter and scan velocity in scan surface of one layer. For reduction of build time, beam diameter and scan velocity is proposed in stereolithography process.

  • PDF

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

Development of the program for Optimal Design of High Speed Endmill (최적형상의 고속용 엔드밀 설계를 위한 프로그램 개발)

  • 고성림;한창규;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.500-503
    • /
    • 2003
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

Texture Analysis of Machined Surface Using Intensity Gradient (광 강도변화를 이용한 가공면의 텍스쳐 해석)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.316-322
    • /
    • 1998
  • Super precision working technique and machine tool have been developing continually thanks to advanced electronic field. To obtain good result. it is necessary to investigate surface state in grinding with ${\mu}{\textrm}{m}$ level. There were so many researches to satisfy these demands using non-contact methods through the computer vision. In this study, the texture of working surface was analyzed. cooccurrence matrice was obtained from the surface roughness. Texture parameter was obtained by means of position operator compose of $\theta$. d according to variation of angle direction and distance. As a result, it was found that surface texture was more effected by direction ($\theta$) then distance(d).

  • PDF