• 제목/요약/키워드: Roughness

검색결과 6,393건 처리시간 0.03초

압연롤의 조도가 박판의 도장성에 미치는 영향에 관한 연구 (A Study on the Effect of Roughness of Rolling Roll in the Paintabilility of Strip)

  • 김순경
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.36-43
    • /
    • 1998
  • Surface roughness of cold rolled steel sheet as well as the coating technique itself is quite important in obtaining high image clarity of electronic products and car outer panels. Especially, surface characteristics of steel sheet have acquired increasing attention from the steel and automotive industries. While the influence of such characteristics on paintability formability and painted surface appearance is important in defining steel surface requirements for automotive industries. Therefore this paper is dedicated primarily to the issue of paint appearance and reviews for improvement of roughness and peak count about the surface of work roll for the actual temper mill. The conclusions were obtained as follows ; 1) Roughness and peak count about the surface of steel sheet is strongly affected by surface condition of work roll. 2) The electro-discharge textured roll has more uniform roughness distribution than shot blasted roll and it's painted appearance of steel sheet has more improvement than that of the shot blasted because it has more harmonic wave roughness, and the higher peak count of surface roughness.

  • PDF

A Study on the Characteristics of Work Roll Texturing for Temper Mill

  • Kim, Soon Kyung;Kim, Moon Kyung;Shahajwalla, Veena;Chung, Uoo Chang
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.80-84
    • /
    • 2001
  • The purpose of this paper is to show the result from the study to improve the formability and appearance which is important in the cold rolled strip, the coated strip and prepainted strip. Furthermore, to give appropriate surface roughness, shape of work roll for temper mill is also important. The strip has a greater peak counts and homogeneous roughness. This makes the prepainted surface smooth and consistent in appearance with good image clarity. Therefore, the surface roughness of the work roll is very important. The reason that surface roughness of the work roll is transferred to the strip surface is the rolling farce and tension at the temper rolling or cold rolling. This study is classified in order to get an accurate and homogeneous roughness. There are few papers published in this field, because its importance is not known and the proper operation of the machine is not generally well known. This paper investigates the correlation between strip surface roughness and the surface of the work roll. After studying the surface roughness and shape according to the texturing method for roll surfaces at temper rolling, the findings were as follows. Irregular surface roughness can be compensated with several paint coatings, but this also makes the quality deteriorate and manufacturing costs go up.

  • PDF

Wind flow simulations in idealized and real built environments with models of various level of complexity

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • 제22권4호
    • /
    • pp.503-524
    • /
    • 2016
  • The suitability of Computational Fluid Dynamics (CFD) simulations on the built environment for the purpose of estimating average roughness characteristics and for studying wind flow patterns within the environment is assessed. Urban models of various levels of complexity are considered including an empty domain, array of obstacles arranged in regular and staggered manners, in-homogeneous roughness with multiple patches, a semi-idealized built environment, and finally a real built environment. For each of the test cases, we conducted CFD simulations using RANS turbulence closure and validated the results against appropriate methods: existing empirical formulas for the homogeneous roughness case, empirical wind speed models for the in-homogeneous roughness case, and wind tunnel tests for the semi-idealized built environment case. In general, results obtained from the CFD simulations show good agreement with the corresponding validation methods, thereby, giving further evidence to the suitability of CFD simulations for built environment studies consisting of wide-ranging roughness. This work also provides a comprehensive overview of roughness modeling in CFD-from the simplest approach of modeling roughness implicitly through wall functions to the most elaborate approach of modeling roughness explicitly for the sake of accurate wind flow simulations within the built environment.

표면조도가 있는 난류경계층에서의 직접수치모사 (Direct numerical simulation of the turbulent boundary layer with rod-roughened wall)

  • 이승현;성형진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.445-448
    • /
    • 2006
  • The effects of surface roughness on a spatially-developing turbulent boundary layer (TBL) were investigated by performing direct numerical simulations of TBLs over rough and smooth walls. The Reynolds number based on the momentum thickness was varied in the range $Re_{\theta}=300{\sim}1400$. The roughness elements used were periodically arranged two-dimensional spanwise rods, and the roughness height was $k=1.5{\theta}_{in}$, which corresponds to $k/{\delta}=0.045{\sim}0.125$. To avoid generating a rough wall inflow, which is prohibitively difficult, a step change from smooth to rough was placed $80{\theta}_{in}$ downstream from the inlet. The spatially-developing characteristics of the rough-wall TBL were examined. Along the streamwise direction, the friction velocity approached a constant value and a self-preserving form of the turbulent stress was obtained. Introduction of the roughness elements affected the turbulent stress not only in the roughness sublayer but also in the outer layer. Despite the roughness-induced increase of the turbulent stress in the outer layer, the roughness had only a relatively small effect on the anisotropic Reynolds stress tensor in the outer layer. Inspection of the triple products of the velocity fluctuations revealed that introducing the roughness elements onto the smooth wall had a marked effect on vertical turbulent transport across the whole TBL. By contrast, good surface similarity in the outer layer was obtained for the third-order moments of the velocity fluctuations.

  • PDF

Evaluation of Gloss Variation with a Novel Method

  • Sung, Yong-Joo;D. Steven Keller
    • 펄프종이기술
    • /
    • 제34권2호
    • /
    • pp.73-83
    • /
    • 2002
  • Gloss is very important optical property influencing the perceived quality of the paper surface as well as the surface after printing. Although the average gloss level of paper products or printed images is important to meet end use specifications, the occurrence of gloss mottle, or non-uniformity of gloss, is often of greater concern for meeting quality requirements, especially for the high gloss paper. Gloss variation originates from the irregularities of paper surface, especially surface roughness of paper. Roughness of paper can be divided into micro-roughness (under $1\mu m$ scale in variation) and macro-roughness (over $1\mu m$ scale in variation) depending on the scale of the irregularities. A clearer understanding of the gloss variation of paper can be achieved by separating the contributions of these two scales of roughness, and characterizing them independently. In order to do this, a novel gloss measuring method was introduced. This can detect local gloss with very high resolution. The effect of macro-roughness on gloss variation, which was identified by the measurable surface topography, was separated from the total gloss variation by using this method. The effect of micro-roughness was then estimated indirectly. The local gloss variations of various paper samples were then evaluated to demonstrate the utility of this approach.

표면조도가 난류구조에 미치는 영향 (Organized structure of turbulent boundary layer with rod-roughened wall)

  • 이재화;이승현;김경연;성형진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.189-192
    • /
    • 2008
  • Turbulent coherent structure near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The roughness sublayer id defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

  • PDF

Study of Mass and Flow Resistance in a Square Ribbed Microchannel using Lattice Boltzmann Method

  • Taher, Mohammad Abu;Kim, Heuy-Dong;Lee, Yeon-Won
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.207-214
    • /
    • 2014
  • Mass and flow resistance in a square ribbed microchannel have been studied numerically using the Lattice Boltzmann Method. It has been build up on two dimensional nine velocity vectors model with single relaxation time method called the Lattice Bhatnagor-Gross-Krook model. To analyze the roughness effect on the flow resistance namely the friction factor and mass flow has been discussed at the slip flow regime, $0.01{\leq}Kn{\leq}0.10$, where Kn is the Knudsen number. The wall roughness is considered by square microelements with a relative roughness height up to maximum 10% of channel height. The velocity profiles in terms of streamlines near the riblets are demonstrated to be responsible for the roughness effect. It is found that the roughness effect leads to increase the flow resistance with roughness height but it is decreased significantly with increasing the space between two roughness elements as well as the Knudsen number. In addition, the mass flow decreased linearly with increasing both roughness height and gap but significantly changed at the slip flow regime.

측정방향에 따른 표면 거칠음 정도의 변화 양상 (Directional Variations in Surface Roughness Determinations)

  • Lee, Seok-Won
    • 한국지반공학회논문집
    • /
    • 제15권4호
    • /
    • pp.247-260
    • /
    • 1999
  • 여러 연구들을 통하여 표면 거칠음 정도가 접촉면 전단력에 매우 중요함이 밝혀졌으며, 따라서 그 역할을 충분히 이해하기 위해서는 표면 거칠음 정도가 정확히 정량화 되어져야 한다. 현재까지 이러한 표면 거칠음 정도를 나타내는 표면 거칠기 매개변수는 대부분 방향성을 고려하지 않은 3차원적인 trisector에서 측정되어 왔고, 그 결과는 정적인 표면을 대표하는 값으로 적당하였다. 그러나, 표면 거칠기 매개변수와 접촉면 전단력과 같이 방향성을 갖는 매개변수와의 상관관계를 조사하기 위해서는 전단방향과 동일한 방향으로 측정된 2차원적인 표면 거칠음 값이 더욱더 합리적인 대표 값이 될 수 있다. 따라서, 본 연구에서는 전단방향을 고려한 표면 거칠음 정도를 구할 수 있는 새로운 표면 거칠기 매개변수를 제안하였다. 제안된 방향성 매개변수와 기존의 표면 거칠기 매개변수를 비교 분석함으로서, 방향성 매개변수와 비 방향성 매개변수와의 상관관계를 조사하였다. 표면 거칠음 정도는 디지털 이미지 분석 시스템을 이용한 Optical Profile Microscopy(OPM) 방법을 이용하여 측정하였다. 그 결과, 본 연구에서 측정된 여러 가지 표면 거칠기 매개변수는 측정값에 있어서 비슷한 경향을 보여주었으며, 따라서, 서로간의 상관관계가 좋음이 밝혀졌다. 또한 표면 거칠음 정도가 증가함에 따라, 비 방향성의 3차원 매개변수 값이 방향성의 2차원 매개변수보다 계속적으로 증가하는 양상이 보여졌다.

  • PDF

연마 과정에 따른 열중합 의치상 레진의 표면 거칠기 평가 (Evaluation of surface roughness of heat-polymerized denture base resin according to the polishing step)

  • 황성식;임용운;김시철;한민수
    • 대한치과기공학회지
    • /
    • 제37권4호
    • /
    • pp.205-212
    • /
    • 2015
  • Purpose: The objective of this study was to compare the surface roughness according to polishing process in conventional laboratory techniques used for polishing three different acrylic denture base resins. Materials and methods: Specimen preparation and surface polishing procedures were conducted to manufacturer's recommendation with three heat-polymerized denture base resins. Surface roughness and gloss were measured by a contact type tester and a LED gloss checker using thickness 2 mm and diameter 10 mm. There were five specimens for each acrylic resin material and polishing procedures. Mean average surface roughness (Ra) values of each specimen group were analyzed using a one-way ANOVA analysis of variance and Scheffe's post hoc test. Surfaces after surface roughness and gloss testing according to each polishing process were evaluated under a stereoscopic microscope. Results: The highest mean average surface roughness was measured($Ra=2.43{\pm}0.47$) for surfaces finished with a denture tungsten carbide bur in Triplex. The lowest surface roughness values ($Ra=0.11{\pm}0.07$) were determined in Vertex polished with a lathe. In addition, all materials revealed that surface roughness determined highly in HP1 and HP2 than other procedures. All correlation between surface roughness and gloss showed highly with three heat-polymerized resins. Specially, topmost correlation revealed than other material in Triplex. Significant differences in mean average surface roughness were found between polishing process used high speed lathe and low speed hand-piece. Conclusion: Laboratory polishing used to high speed was found to produce the smoothest surface of heat-polymerized denture base acrylic resin. Therefore, we recommended that high polishing process need to get smooth surface.

암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 - (Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite)

  • 김종태;정교철;김만일;송재용;박창근
    • 지질공학
    • /
    • 제14권2호
    • /
    • pp.147-168
    • /
    • 2004
  • 이 연구는 지하수유동에 영향을 주는 조ㆍ중ㆍ세립질 화강암 불연속면 거칠기의 특성을 비교한 것이다. 공초점 레이저 현미경으로 관찰된 거칠기 데이터는 스펙트럼 분석과 고속푸리에 변환에 의해 해석되었다. 또한 노이지가 제거된 거칠기 데이터에 대하여 거칠기 특성을 정량화하기 위하여 프랙탈 해석에 적용해 보았다. 이를 위해 조ㆍ중ㆍ세립질 화강암 코어를 대상으로 브라질리안 시험으로 인공 단열을 발생시켰다. 측정은 전체 12개의 공시체에서 36개의 조사선에서 실시되었다. 공초점 레이저 현미경을 사용하여 연속적인 거칠기를 이산 데이터로 표현할 수 있으며, 이렇게 하여 얻어진 이산데이터를 바탕으로 고속 푸리에 변환을 실시한 결과 제2 고조파 성분이 가장 큰 값을 보이고 있다. 또한 스펙트럼 에너지 분포는 조립질 공시체에서 0.9853, 중립질 공시체에서 1.0792, 세립질 공시체에서 0.6794의 평균값을 보이고 있으며, 이는 프랙탈 해석에서와 마찬가지로 거칠기가 클수록 저주파수 영역대에서 고조파의 에너지 분포가 높게 나타남을 알 수 있다.