• Title/Summary/Keyword: Rough set

Search Result 258, Processing Time 0.034 seconds

Using rough set to develop a volatility reverting strategy in options market (러프집합을 활용한 KOSPI200 옵션시장의 변동성 회귀 전략)

  • Kang, Young Joong;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.135-150
    • /
    • 2013
  • This study proposes a novel option strategy by using characteristic of volatility reversion and rough set algorithm in options market. Until now, various research has been conducted on stock and future markets, but minimal research has been done in options market. Particularly, research on the option trading strategy using high frequency data is limited. This study consists of two purposes. The first is to enjoy a profit using volatility reversion model when volatility gap is occurred. The second is to pursue a more stable profit by filtering inaccurate entry point through rough set algorithm. Since options market is affected by various elements like underlying assets, volatility and interest rate, the point of this study is to hedge elements except volatility and enjoy the profit following the volatility gap.

A Design of RSIDS using Rough Set Theory and Support Vector Machine Algorithm (Rough Set Theory와 Support Vector Machine 알고리즘을 이용한 RSIDS 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.179-185
    • /
    • 2012
  • This paper proposes a design of RSIDS(RST and SVM based Intrusion Detection System) using RST(Rough Set Theory) and SVM(Support Vector Machine) algorithm. The RSIDS consists of PrePro(PreProcessing) module, RRG(RST based Rule Generation) module, and SAD(SVM based Attack Detection) module. The PrePro module changes the collected information to the data format of RSIDS. The RRG module analyzes attack data, generates the rules of attacks, extracts attack information from the massive data by using these rules, and transfers the extracted attack information to the SAD module. The SAD module detects the attacks by using it, which the SAD module notifies to a manager. Therefore, compared to the existing SVM, the RSIDS improved average ADR(Attack Detection Ratio) from 77.71% to 85.28%, and reduced average FPR(False Positive ratio) from 13.25% to 9.87%. Thus, the RSIDS is estimated to have been improved, compared to the existing SVM.

Extraction Method of Significant Clinical Tests Based on Data Discretization and Rough Set Approximation Techniques: Application to Differential Diagnosis of Cholecystitis and Cholelithiasis Diseases (데이터 이산화와 러프 근사화 기술에 기반한 중요 임상검사항목의 추출방법: 담낭 및 담석증 질환의 감별진단에의 응용)

  • Son, Chang-Sik;Kim, Min-Soo;Seo, Suk-Tae;Cho, Yun-Kyeong;Kim, Yoon-Nyun
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.134-143
    • /
    • 2011
  • The selection of meaningful clinical tests and its reference values from a high-dimensional clinical data with imbalanced class distribution, one class is represented by a large number of examples while the other is represented by only a few, is an important issue for differential diagnosis between similar diseases, but difficult. For this purpose, this study introduces methods based on the concepts of both discernibility matrix and function in rough set theory (RST) with two discretization approaches, equal width and frequency discretization. Here these discretization approaches are used to define the reference values for clinical tests, and the discernibility matrix and function are used to extract a subset of significant clinical tests from the translated nominal attribute values. To show its applicability in the differential diagnosis problem, we have applied it to extract the significant clinical tests and its reference values between normal (N = 351) and abnormal group (N = 101) with either cholecystitis or cholelithiasis disease. In addition, we investigated not only the selected significant clinical tests and the variations of its reference values, but also the average predictive accuracies on four evaluation criteria, i.e., accuracy, sensitivity, specificity, and geometric mean, during l0-fold cross validation. From the experimental results, we confirmed that two discretization approaches based rough set approximation methods with relative frequency give better results than those with absolute frequency, in the evaluation criteria (i.e., average geometric mean). Thus it shows that the prediction model using relative frequency can be used effectively in classification and prediction problems of the clinical data with imbalanced class distribution.

The diagnosis of Plasma Through RGB Data Using Rough Set Theory

  • Lim, Woo-Yup;Park, Soo-Kyong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.413-413
    • /
    • 2010
  • In semiconductor manufacturing field, all equipments have various sensors to diagnosis the situations of processes. For increasing the accuracy of diagnosis, hundreds of sensors are emplyed. As sensors provide millions of data, the process diagnosis from them are unrealistic. Besides, in some cases, the results from some data which have same conditions are different. We want to find some information, such as data and knowledge, from the data. Nowadays, fault detection and classification (FDC) has been concerned to increasing the yield. Certain faults and no-faults can be classified by various FDC tools. The uncertainty in semiconductor manufacturing, no-faulty in faulty and faulty in no-faulty, has been caused the productivity to decreased. From the uncertainty, the rough set theory is a viable approach for extraction of meaningful knowledge and making predictions. Reduction of data sets, finding hidden data patterns, and generation of decision rules contrasts other approaches such as regression analysis and neural networks. In this research, a RGB sensor was used for diagnosis plasma instead of optical emission spectroscopy (OES). RGB data has just three variables (red, green and blue), while OES data has thousands of variables. RGB data, however, is difficult to analyze by human's eyes. Same outputs in a variable show different outcomes. In other words, RGB data includes the uncertainty. In this research, by rough set theory, decision rules were generated. In decision rules, we could find the hidden data patterns from the uncertainty. RGB sensor can diagnosis the change of plasma condition as over 90% accuracy by the rough set theory. Although we only present a preliminary research result, in this paper, we will continuously develop uncertainty problem solving data mining algorithm for the application of semiconductor process diagnosis.

  • PDF

Feature Selection Based on Bi-objective Differential Evolution

  • Das, Sunanda;Chang, Chi-Chang;Das, Asit Kumar;Ghosh, Arka
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.130-141
    • /
    • 2017
  • Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the proposed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of features, and a high number of objects with a low number of features.

Classification of Arrhythmia Based on Discrete Wavelet Transform and Rough Set Theory

  • Kim, M.J.;J.-S. Han;Park, K.H.;W.C. Bang;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.5-28
    • /
    • 2001
  • This paper investigates a classification method of the electrocardiogram (ECG) into different disease categories. The features for the classification of the ECG are the coefficients of the discrete wavelet transform (DWT) of ECG signals. The coefficients are calculated with Haar wavelet, and after DWT we can get 64 coefficients. Each coefficient has morphological information and they may be good features when conventional time-domain features are not available. Since all of them are not meaningful, it is needed to reduce the size of meaningful coefficients set. The distributions of each coefficient can be the rules to classify ECG signal. The optimally reduced feature set is obtained by fuzzy c-means algorithm and rough set theory. First, the each coefficient is clustered by fuzzy c-means algorithm and the clustered ...

  • PDF

Intelligent information filtering using rough sets

  • Ratanapakdee, Tithiwat;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1302-1306
    • /
    • 2004
  • This paper proposes a model for information filtering (IF) on the Web. The user information need is described into two levels in this model: profiles on category level, and Boolean queries on document level. To efficiently estimate the relevance between the user information need and documents by fuzzy, the user information need is treated as a rough set on the space of documents. The rough set decision theory is used to classify the new documents according to the user information need. In return for this, the new documents are divided into three parts: positive region, boundary region, and negative region. We modified user profile by the user's relevance feedback and discerning words in the documents. In experimental we compared the results of three methods, firstly is to search documents that are not passed the filtering system. Second, search documents that passed the filtering system. Lastly, search documents after modified user profile. The result from using these techniques can obtain higher precision.

  • PDF

Design of a Hierarchically Structured Gas Identification System Using Fuzzy Sets and Rough Sets (퍼지집합과 러프집합을 이용한 계층 구조 가스 식별 시스템의 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.419-426
    • /
    • 2018
  • An useful and effective design method for the gas identification system is presented in this paper. The proposed gas identification system adopts hierarchical structure with two level rule base combining fuzzy sets with rough sets. At first, a hybrid genetic algorithm is used in grouping the array sensors of which the measured patterns are similar in order to reduce the dimensionality of patterns to be analyzed and to make rule construction easy and simple. Next, for low level identification, fuzzy inference systems for each divided group are designed by using TSK fuzzy rule, which allow handling the drift and the uncertainty of sensor data effectively. Finally, rough set theory is applied to derive the identification rules at high level which reflect the identification characteristics of each divided group. Thus, the proposed method is able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, we demonstrated the effectiveness of the proposed methods by identifying five types of gases.

The Study on Information-Theoretic Measures of Incomplete Information based on Rough Sets (러프 집합에 기반한 불완전 정보의 정보 이론적 척도에 관한 연구)

  • 김국보;정구범;박경옥
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.550-556
    • /
    • 2000
  • This paper comes to derive optimal decision rule from incomplete information using the concept of indiscernibility relation and approximation space in Rough set. As there may be some errors in case that processing information contains multiple or missing data, the method of removing or minimizing these data is required. Entropy which is used to measure uncertainty or quantity in information processing field is utilized to remove the incomplete information of rough relation database. But this paper does not always deal with the information system which may be contained incomplete information. This paper is proposed object relation entropy and attribute relation entropy using Rough set as information theoretical measures in order to remove the incomplete information which may contain condition attribute and decision attribute of information system.

  • PDF

Classify Layer Design for Navigation Control of Line-Crawling Robot : A Rough Neurocomputing Approach

  • Ahn, Taechon;Peters, James F.;Borkowski, Maciey
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.1-68
    • /
    • 2002
  • This paper considers a rough neurocomputing approach to the design of the classify layer of a Brooks architecture for a robot control system. The Paradigm for neurocomputing that has its roots in rough set theory, and works well in cases where there is uncertainty about the values of measurements used to make decisions. In the case of the line-crawling robot (LCR) described in this paper, rough neurocomputing is used to classify sometimes noisy signals from sensors. The LCR is a robot designed to crawl along high-voltage transmission lines where noisy sensor signals are common because of the electromagnetic field surrounding conductors. In rough neurocomputing, training a network of neurons...

  • PDF