• Title/Summary/Keyword: Rough Fracture

Search Result 52, Processing Time 0.025 seconds

Planar plastic flow of polymers near very rough walls

  • Lyamina, Elena A.;Date, Prashant P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.707-718
    • /
    • 2016
  • The main objective of the present paper is to investigate, by means of a boundary value problem permitting a semi-analytic solution, qualitative behaviour of solutions for two pressure-dependent yield criteria used for plastically incompressible polymers. The study mainly focuses on the regime of friction (sticking and sliding). It is shown that the existence of the solution satisfying the regime of sticking depends on other boundary conditions. In particular, there is such a class of boundary conditions depending on the yield criterion adopted that the regime of sliding is required for the existence of the solution independently of the friction law.

The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability (압력에 따른 균열 간극변화와 수리전도도 변화 관찰)

  • 채병곤;이철우;정교철;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2003
  • In order to measure aperture variation dependent on normal stress and to characterize on relationship between aperture variation and hydraulic conductivity this study measured apertures of rock fractures under a high resolution confocal laser scanning microscope (CLSM) with application of five stages of uniaxial normal stresses. From this method the response of aperture can be continuously characterized on one specimen by different loads of normal stress. The results of measurements showed a rough geometry of fracture bearing non-uniform aperture. They also revealed different values of aperture variations according to the load stages on each position along a fracture due to the fracture roughness. Laboratory permeability tests were also conducted to evaluate the changes of permeability coefficients related to the aperture variations by different loads. The results of permeability tests revealed that the hydraulic conductivity was not reduced at a fixed rate with increase of normal load. Moreover, the rates of aperture variations did not match to those of hydraulic conductivity. The hydraulic conductivity calculated in this study did not follow the cubic law, representing that the parallel plate model is not suitable to express the fracture geometry corresponding to the results of aperture measurements under the CLSM.

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

A Numerical Study on Characteristics of Solute Transport in a Rough Single Fracture with Spatial Correlation Length and Effect of Effective Normal Stress (공간적 상관길이와 유효수직응력의 효과에 따른 거친 단일 균열내의 용질이동특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • This study is to analyze numerically the spatial behaviors of the solute transport in a spatially correlated variable-aperture fracture under the effective normal stress conditions. Numerical results show that the solute transport in a fracture is strongly affected by the spatial correlation length of apertures and applied effective normal stress. According to increasing spatial correlation length, the mean residence time of solute is decreased and the tortuosity and Peclet number (is a dimensionless number relating the rate of advection of a flow to its rate of diffusion) is also decreased. These results mean that the geometry of the aperture distribution is favorable to the solute transport as the spatial correlation length is increased. However, according to the applied effective normal stress is increased, the mean residence time and tortuosity have a tendency to increase but the Peclet number is decreased. The main reason that the Peclet number is decreased, is that the solute is displaced by one or two channels with relatively higher local flow rate due to the increment of contact areas by increasing effective normal stress. Moreover, based on numerical results of the solute transport in this study, the exponential-type correlation formulae between the mean residence time and the effective normal stress are proposed.

  • PDF

MECHANICAL PROPERTIES OF LASER WELDED Co-Cr ALLOY (레이저 융합된 Co-Cr 합금의 물리적 성질에 관한 연구)

  • Bae Ki-Chang;Woo Yi-Hyung;Lee Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.440-450
    • /
    • 2003
  • Statement of problem : The joints of removable partial denture alloys have failed frequently after routine usage. Purpose : The purpose of this study was to evaluate the mechanical properties of the laser welded Co-Cr alloys. Material and method : For this study 20 Co-Cr specimens were casted and 10 of them were seperated on the middle area and laser welded with Alpha laser welding machine(Siro Lasertec, Pforzheim, Germany). Rest of them which were as cast, were used as a control group. For the section of the experimental specimens, wire cutting machine was used to make a even gap of the all specimens. Laser welding was done with manufacturer's instrunction and tested each specimen by Instron Machine. Tensile strength, 0.2% yield strength and % elongations were recorded. Fractured surfaces were investigated with SEM. Results : The results were as follows : 1. The tensile strength of the laser welded group(617.7MPa) was about 75% of the as cast group(820.4MPa). It had stastically significant differences(p<0.05). 2. The % elongation of the experimental group was 6.6 which was lower than the control group(14.3). 3. Fracture of the experimental group occured in the welded surface and showed many voids. In contrast, the fracture surface of the control group was showed rough surfaces without any voids. Conclusion : The tensile strengths of the as-cast joints were higher than those for the laser welded joints, and the % elongation of the experimental group was lower than the control group. Porosity was found in laser-welded joints.

Mine water inrush characteristics based on RQD index of rock mass and multiple types of water channels

  • Jinhai Zhao;Weilong Zhu;Wenbin Sun;Changbao Jiang;Hailong Ma;Hui Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Because of the various patterns of deep-water inrush and complicated mechanisms, accurately predicting mine water inflows is always a difficult problem for coal mine geologists. In study presented in this paper, the water inrush channels were divided into four basic water diversion structures: aquifer, rock fracture zone, fracture zone and goaf. The fluid flow characteristics in each water-conducting structure were investigated by laboratory tests, and multistructure and multisystem coupling flow analysis models of different water-conducting structures were established to describe the entire water inrush process. Based on the research of the water inrush flow paths, the analysis model of different water inrush space structures was established and applied to the prediction of mine water inrush inflow. The results prove that the conduction sequence of different water-conducting structures and the changing rule of permeability caused by stress changes before and after the peak have important influences on the characteristics of mine water-gushing. Influenced by the differences in geological structure and combined with rock mass RQD and fault conductivity characteristics and other mine exploration data, the prediction of mine water inflow can be realized accurately. Taking the water transmitting path in the multistructure as the research object of water inrush, breaking through the limitation of traditional stratigraphic structure division, the prediction of water inflow and the estimation of potentially flooded area was realized, and water bursting intensity was predicted. It is of great significance in making reasonable emergency plans.

A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures

  • Choi, Tae Joon;Burm, Jin Sik;Yang, Won Yong;Kang, Sang Yoon
    • Archives of Plastic Surgery
    • /
    • v.43 no.1
    • /
    • pp.84-87
    • /
    • 2016
  • Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic.

Cutting Chip Forms on the Cutting Condition and Tempering Temperatures of Lead-free Brass (무연황동의 절삭 칩 형태에 미치는 절삭조건과 템퍼링 온도의 영향)

  • Joo, Y.S.;Lee, S.B.;Kim, S.Y.;Joo, C.S.;Jung, B.H
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.14-21
    • /
    • 2012
  • The effects of cutting condition and tempering temperature for the shape of cutting chip were investigated. For this purpose, a lead-free brass containing 1wt.% of Bi extruded at $750^{\circ}C$ in straight turning was used in this study. The cutting chip preferred was mainly found to be loose form of arc chips with curling discontinuity, and these were formed by shear fracture. However, some of fragmental element chip were found to be mixed when tempering temperature was as high as $500^{\circ}C$. The form and size of chip was more affected by feed rate than by tempering temperature and cutting rate. In addition, the cutting surface was observed to be formed more rough in the case of high feed rate and low cutting rate compared to low feed rate and high cutting rate.

STRUCTURAL CHANGE OF TEETH EXPOSED TO VARIOUS TEMPERATURE RANGE (온도변화(溫度變化)에 따른 치질(齒質)의 구조적변화(構造的變化))

  • Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.2 no.1
    • /
    • pp.50-54
    • /
    • 1976
  • 16 healthy teeth extracted have been selected and their color and structural change have been observed at the fixed temperatures of $200^{\circ}F$., $400^{\circ}F$., $600^{\circ}F$., and $800^{\circ}F$. respectively at the intervals of 10min. 30min and 60min. The results were as follows: 1) $200^{\circ}F$ Groop: At the 60 minutes interval, crown surface shows pattern simliars to mottled teeth and roots take on light yellowish colar and interglobular dentin tends to be rough. 2) $400^{\circ}C$ Groop: at the 30 minutes interval, cracks begin to show in the direction of long axis of the teeth and crown surface have been observed on the verge of fracture at the 60 minutes interval. 3) $600^{\circ}F$ Groop: Crowns take on grayish-white color thoroughout 10, 30 and 60 minutes intervals and roots reveal black color. Moreover the seperation of enamel from dentin has been confirmed at the 60 minutes interval and inner dentin has changed black. 4) $800^{\circ}F$ Groop: Crowns take on the same grayish-white color as at the $600^{\circ}F$ at the 10, 30 and 60 minutes intervals and roots reveal gray color at the 30 and 60 minutes intervals, while parts of the crown have fractured at the 10 minutes interval. Inner dentin has turned gray at the 60 minutes interval.

  • PDF