• Title/Summary/Keyword: Rotor-Stator

Search Result 1,061, Processing Time 0.03 seconds

A Study On The Stator Slot Shape Design of BLDC Motor (BLDC 모터 고정자 슬롯 형상설계에 관한 연구)

  • Han, Sang-Rog;Lee, Kang-Yeon;Jeong, Byeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.41-49
    • /
    • 2015
  • In this paper, we studied an optimal design and efficiency improvement of the BLCD motor used in home electronic appliance. The number of stator slots is chosen depending on the rotor poles, phase number, and the winding configuration. In general, a fractional slots/pole design is preferred to minimize cogging torque. To reduce the winding resistance, we reduced the coil length and we improved the coil space factor. We proposed three types of stator slot shape design for the optimal BLDC motor design. One of them, U-type slot shape is a best optimal design, it proved by the simulated and tested. Optimal design of essential parameters aiming at high winding factor are presented to create for a high-quality system implementation. Design analysis is verified by testing and building a prototype motor.

Static Characteristic Analysis of Mechanical Face Seal Used for Boiler Feedwater Pump (보일러 급수 펌프용 미케니컬 페이스 실의 정특성 해석)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.230-239
    • /
    • 2010
  • Mechanical face seal installed in boiler feedwater pump prevents leakage of working fluid using thin fluid film between stator and rotor. If the leakage of working fluid exceeds the allowable volume, serious malfunction of boiler feedwater pump will be happen. The thinner fluid film exists between stator and rotor, the less working fluid leaks out. However, if the thickness of fluid film is not enough, the wear of seal face will be increased. And it causes the decrease in life of mechanical face seal. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the static characteristics of wavy mechanical face seals which have 4 different wavy surface profiles on rotor. As a result, opening force, leakage volume of working fluid and friction torque were obtained. For the same minimum film thickness, the static characteristics of mechanical face seal were affected by the wavy surface profile which can change the thickness of working fluid film and pressure distribution.

Control of Elevator Induction Motors with High Dynamic Performance and High Power Efficiency (엘리베이터를 위한 유도전동기의 에너지절감 및 고성능제어)

  • 김규식;김재윤;최주엽;송중호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance and high power efficiency by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. New recursive adaptation algorithms for rotor resistance and mutual inductance which can be applied to our nonlinear feedback controller are also presented in this paper. The recursive adaptation algorithms make the estimated values of rotor resistance and mutual inductance track their real values. Some simulation and experimental results show that the adaptation algorithms are robust against the variation of stator resistance and stator inductance.

Sensorless Control of a Single-Phase Switched Reluctance Motor Using Residual Flux

  • Yang, Hyong-Yeol;Shin, Duck-Shick;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.911-918
    • /
    • 2009
  • This paper presents a new sensorless control method for single-phase switched reluctance motors using induced electromotive force (EMF) due to the residual flux both on the stator and the rotor during phase commutation. The induced EMF falls to zero when the rotor pole moves away from the overlap with the stator pole. By detecting this instant, the speed and position of the rotor can be simply estimated. This method is very simple to implement and it is insensitive to variations in the system parameters as it does not require any stored magnetic data or offline inductance measurements but requires only measurements of the terminal voltage and a simple analog circuit. The proposed method is implemented on a 6/6 single-phase switched reluctance motor. However, it can also be implemented on a multiphase SRM regardless of the size, operation speed and switching mode of the motor hence making the proposed method viable to many applications. Simulation and experimental verification is provided to demonstrate the feasibility of the proposed method.

Design, Fabrication, and Testing of a MEMS Microturbine

  • Jeon Byung Sun;Park Kun Joong;Song Seung Jin;Joo Young Chang;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.682-691
    • /
    • 2005
  • This paper describes the design, fabrication, and testing of a microturbine developed at Seoul National University. Here, the term 'microturbine' refers to a radial turbine with a diameter on the order of a centimeter. Such devices can be used to transmit power for various systems. The turbine is designed using a commercial CFD code, and it has a design flow coefficient of 0.238 and work coefficient of 0.542. It has 31 stator blades and 24 rotor blades. A hydrodynamic journal bearing and hydrostatic thrust bearings counteract radial and axial forces on the rotor. The test turbine consists of a stack of five wafers and is fabricated by MEMS technology, using photolithography, DRIE, and bonding processes. The first, second, fourth, and fifth layers contain plumbing, and hydrostatic axial thrust bearings for the turbine. The third wafer contains the turbine's stator, rotor, and hydrodynamic journal bearings. Furthermore, a turbine test facility containing a flow control system and instrumentation has been designed and constructed. In performance tests, a maximum rotation speed of 11,400 rpm and flow rate of 16,000 sccm have been achieved.

Optimum Design of Pole arc shape Considering Torque Ripple of SRM (SRM의 토크리플을 고려한 극호형상의 최적설계)

  • Lee, Jin-Woo;Woo, Kyung-Il;Kim, Hong-Seok;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.30-32
    • /
    • 2001
  • Switched reluctance motors have the advantage a high torque/weight ratio, as the large reluctance torque is made by salient poles of both start and rotor, and a high reliability. On the other hand, the switched reluctance motors have the disadvantage of a large ripple torque which is made by salient poles. So the application for the industrial fields have been limited to special cases. Geometric significant parameters are ${\beta}_r$ and ${\beta}_s$ respectively the rotor and stator pole arc while the significant electric parameters are the angles where the drive switches are turned on and off. It can be simulated that ${\beta}_r$ and ${\beta}_s$ must be chosen in a particular region of the plane (${\beta}_r,\;{\beta}_s$) called the feasible triangle. The aim of this paper is to simulate the minimum of the torque ripple by using finite element method and to determine the best choice of the rotor and stator pole arc.

  • PDF

Speed and Flux Estimation for an Induction Motor Using a Parameter Estimation Technique

  • Lee Gil-Su;Lee Dong-Hyun;Yoon Tae-Woong;Lee Kyo-Beum;Song Joong-Ho;Choy Ick
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, an estimator scheme for the rotor speed and flux of an induction motor is proposed on the basis of a fourth-order electrical model. It is assumed that only the stator currents and voltages are measurable, and that the stator currents are bounded. There are a number of common terms in the motor dynamics, and this is utilized to find a simple error model involving some auxiliary variables. Using this error model, the state estimation problem is converted into a parameter estimation problem assuming that the rotor speed is constant. Some stability properties are given on the basis of Lyapunov analysis. In addition, the rotor resistance, which varies with the motor temperature, can also be estimated within the same framework. The effectiveness of the proposed scheme is demonstrated through computer simulations and experiments.

Operating Characteristics of Squirrel-Cage Induction Motor of 5-Phase 1.5kW (5상 1.5kW 농형 유도전동기의 운전특성)

  • Kim, Min-Huei;Jung, Hyung-Woo;Song, Hyun-Jig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.52-59
    • /
    • 2014
  • This paper presents an improved operating characteristics of squirrel-cage induction motor(IM) for 5-phase 1.5kW, 220V, 60Hz in order to study a polyphase AC machinery that keep hold of advantages more than traditional three-phase a IM, such as reducing a amplitude of torque pulsation, decreasing electric noises, and increasing the reliability. The developed manufacturing motor was necessary to do improvement of speed regulation, efficiency, operating characteristics, and so on at rated load. There are remake a redesigned and distributed stator winding connection without changing the frames of stator and rotor core in previous established the motor by a repeat tests. There are shown a experiments results of no-load test, locked rotor test, operating characteristics at variable load, FFT analysis of harmonics within output voltages and current waveform, decided motor parameters.

Research on the inlet preswirl effect of clearance flow in canned motor reactor coolant pump

  • Xu, Rui;Song, Yuchen;Gu, Xiyao;Lin, Bin;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2540-2549
    • /
    • 2022
  • For a pressurized water reactor power plant, the reactor coolant pump (RCP) is a kernel component. And for a canned motor RCP, the rotor system's properties determines its safety. The liquid coolant inside the canned motor RCP fills clearance between the metal shields of rotor and stator, forming a lengthy clearance flow. The influence of inlet preswirl on rotordynamic coefficients of clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally investigated in this work. A quasi-steady state computational fluid dynamics (CFD) method has been used to investigate the influence of inlet preswirl. A vertical experiment rig has also been established for this purpose. Rotordynamic coefficients on different inlet preswirl ratios (IR) are obtained through CFD and experiment. Results show that the cross-coupled stiffness of the clearance flow would change significantly with inlet preswirl, but other rotordynamic coefficients would not change significantly with inlet preswirl. For the case of clearance flow between the stator and rotor cans, influence of inlet preswirl is not so significant as the IR is not large enough.

Speed-Sensorless Induction Motor Control System using a Rotor Speed Compensation (회전자 속도보상을 이용한 센서리스 유도전동기 제어 시스템)

  • Jeong Gang-Youl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.154-161
    • /
    • 2005
  • This paper proposes a speed-sensorless induction motor control system using a rotor speed compensation. To explain the proposed system, this paper describes an induction motor model in the synchronous reference frame for the vector control. The rotor flux is estimated by the rotor flux observer using the reduced-dimensional state estimator technique. The estimated rotor speed is directly obtained from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. The error of the rotor time constant is indirectly reflected in the rotor speed compensation using the compensation of the flux error angle. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. An implementation of pulse-width modulation (PWM) pulses using an effective space vector modulation (SVM) is briefly mentioned. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.