• Title/Summary/Keyword: Rotor-Stator

Search Result 1,061, Processing Time 0.031 seconds

Numerical Predictions of Roughness Effects on the Performance Degradation of an Axial-Turbine Stage

  • Kang Young-Seok;Yoo Jae-Chun;Kang Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1077-1088
    • /
    • 2006
  • This paper describes a numerical investigation on the performance deteriorations of a low speed, single-stage axial turbine due to use of rough blades. Numerical calculations have been carried out with a commercial CFD code, CFX-Tascflow, by using a modified wall function to implement rough surfaces on the stator vane and rotor blade. To assess the stage performance variations corresponding to 5 equivalent sand-grain roughness heights from a transition ally rough regime to a fully rough regime, stage work coefficient and total to static efficiency were chosen. Numerical results showed that both work coefficient and stage efficiency reduced as roughness height increased. Higher surface roughness induced higher blade loading both on the stator and rotor which in turn resulted in higher deviation angles and corresponding work coefficient reductions. Although, deviation angle changes were small, a simple sensitivity analysis suggested that their contributions on work coefficient reductions were substantial. Higher profile loss coefficients were predicted by higher roughness heights, especially on the suction surface of the stator and rotor. Furthermore sensitivity analysis similar to the above, suggested that additional profile loss generations due to roughness were accountable for efficiency reductions.

Numerical Analysis Study on the Fluid Flow Characteristics of Hydraulic Retarder for Heavy Vehicles (대형 차량용 유압식 리타더의 유동 특성에 관한 수치해석적 연구)

  • Park, In-Sung;Jang, Hyun;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • This study examined the fluid flow characteristics of a hydraulic retarder adapted as an auxiliary brake for heavy vehicles. The commercial computational fluid dynamics (CFD) software STAR-CCM+ was used to investigate the torque performance and flow characteristics of the hydraulic retarder. The numerical results showed that the pressure distribution was higher near the inner wall surface of the rotor and stator. The pressure of the working fluid increased in the radial direction of the rotor and stator. The variation in the fluid velocity intensity showed a similar trend to that of the fluid pressure, but the maximum velocity appeared near the outer wall surface of the rotor and stator interface. The numerical results showed that increasing the revolution speed of the retarder greatly increased the rate of torque generation.

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

Design and control of a permanent magnet spherical wheel motor

  • Park, Junbo;Kim, Minki;Jang, Hyun Gyu;Jung, Dong Yun;Park, Jong Moon
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.838-849
    • /
    • 2019
  • We present a permanent magnet-based spherical wheel motor that can be used in omnidirectional mobility applications. The proposed motor consists of a ball-shaped rotor with a magnetic dipole and a hemispherical shell with circumferential air-core coils attached to the outer surface acting as a stator. Based on the rotational symmetry of the rotor poles and stator coils, we are able to model the rotor poles and stator coils as dipoles. A simple physical model constructed based on a torque model enables fast numerical simulations of motor dynamics. Based on these numerical simulations, we test various control schemes that enable constant-speed rotation along arbitrary axes with small rotational attitude error. Torque analysis reveals that the back electromotive force induced in the coils can be used to construct a control scheme that achieves the desired results. Numerical simulations of trajectories confirm that even without explicit methods for correcting the rotational attitude error, it is possible to drive the motor with a low attitude error (<5°) using the proposed control scheme.

A Novel 6/5 Switched Reluctance Motor with Short Flux Path: Concept, Design and Analysis

  • Tanujaya, Marully;Lee, Dong-Hee;An, Young-Joo;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • A novel 6/5 switched reluctance motor (SRM) with short flux path is presented in this paper. The concept of this proposed motor is a novel SR motor with six stator and five rotor poles. The stator is constructed with three independent and physically separate C-core segments, and the rotor is composed of five poles. This motor, with a new selection for the number of stator/rotor poles, achieves a short flux path, which reduces the magnetomotive force required to drive the motor. To verify the performance of the proposed motor, a comparison with conventional SR motors with the same dimensions is executed. The comparison demonstrates that the proposed motor offers better performance in terms of maximum torque production. Furthermore, Finite Element Analysis (FEA) and Matlab/Simulink software are used to predict and simulate the performance of the proposed motor.

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

A Study on the Comparison of SRMs with 3 Rotor Poles (3개의 회전자 극을 갖는 SRM의 비교 연구)

  • Bae, Jun-Kyung;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.92-97
    • /
    • 2014
  • The SRM is a doubly salient, singly excited machine. The torque is developed by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e. for the rotor to move into in line with the stator poles and to maximize the inductance of the coils excited. It is common practice to combine them into groups of poles which are excited simultaneously; for example, 8/6 SRM (8 stator poles and 6 rotor poles) for 4 phases, 6/4, 12/8 SRM for 3 phases, 4/2, 6/3 SRM for 2 phases. Small number of phases in two-phase SRMs allows more cost savings with regards to the switching devices in the converter. The stator back irons of two phase 6/3 SRM and C-core 4/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited. In this study, the similarities, the differences, and structural characteristics between the two SRMs was studied, The magnetic analysis also has been carried out by the finite element method analysis (FEM).

Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump

  • Zhou, Qiang;Li, Hongkun;Pei, Lin;Zhong, Zuowen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1020-1028
    • /
    • 2021
  • The nuclear reactor coolant pump transferring heat energy inherently brings with it the unsteady flow and inevitably threatens to the safe operation of the pump unit, especially with the pressure pulsation induced by the rotor-stator interaction. In this paper, the characteristics of pressure pulsation of the diffuser in a nuclear reactor coolant pump were investigated by the numerical simulation with experimental validation. Pressure pulsation signals measured synchronously from sensors mounted on the radial diffuser of a model pump were analyzed via Welch's method. Frequency components induced by the rotor-stator interaction can be revealed by the diameter mode analysis method. The pressure pulsation of the diffuser is dominated by the blade passing frequency and its harmonics, which are free from the effect of flow rate and rotational speed while the corresponding amplitudes are easily affected by different operational conditions and measuring positions. The non-uniformity is much more affected by the rotational speed than the flow rate. This research is helpful for further work to reduce the pressure pulsation for the reactor coolant pump.

A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle (입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구)

  • 조수용;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, the preliminary design method is applied, and then design parameters are chosen after analyzing gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 profile, and rotor blade is designed using shape parameters. Stator is manufactured as an integral type and rotor is manufactured to be disassembled from the disc for changing blade incidence angle. The output power from the rotor is measured with various RPM and input power. Experimental results show that the maximum efficiency of turbine rotor is obtained on the design point, and the output power is proportionally decreased with the negative incidence angle even the test turbine is a reaction turbine. The efficiency of turbine rotor is decreased to 5% by $7.5^{\cire}$ negative incidence angle from the designed value.

  • PDF

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades (냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Wang, Se-Myung;Shim, Ho-Kyung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.