• Title/Summary/Keyword: Rotor-Blade Configuration

Search Result 44, Processing Time 0.028 seconds

A Study of the Conceptual Design of Medium Size Utility Helicopter Rotor System (중형 헬리콥터 로터 시스템 개념설계 연구)

  • Kim, June-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.33-41
    • /
    • 2005
  • This paper describes the conceptual design of medium size helicopter rotor system. Based on assumed design requirements, trade-off study for rotor configuration has been conducted in terms of rotor tip speed, disk loading, blade area, solidity, etc for estimated primary mission gross weight. For the main rotor, four-blade and five-blade rotors are studied with the conventional tail rotor. The performance analysis for baseline configuration is conducted using a helicopter performance analysis program. The analysis shows design results satisfy the design requirements.

An Experimental Study on Aerodynamic Performance of a Rotor-Blade Configuration under Cross-Wind Conditions (측풍 조건을 고려한 로터블레이드 형상의 공력성능에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • In the present study, a wind tunnel test for a rotor-blade configuration was conducted to investigate a basic aerodynamic performance and a effect of the cross wind. The diameter of the configuration was 1.46 m and the test was carried out for both a clean and a tripped configurations. The boundary layer for the trip configuration was simulated by zig-zag tape and the test performed on constant-velocity and constant-rotational modes. It was shown that the test result for the tripped configuration reduces the maximum power coefficient by 9.4% ~ 12.1% compared to the clean one. Within $5^{\circ}$ of the flow angle, there is no significant loss of power, however, the coefficient is reduced by 5.3% ~ 36.7% in the range of $10^{\circ}{\sim}30^{\circ}$.

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

Aerodynamic and Structural Design for Medium Size Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전 날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;방조혁;오동우;김기범;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Nowadays, non-pollution energy sources have been strongly needed because of the exhaustion of fossil fuels and serious environmental problems. Because wind energy can be enormously obtained from natural atmosphere, this type of energy has lots of advantages in a economic and pollution point of view. This study has established the aerodynamic and structural design procedure of the rotor blade with an appropriate aerodynamic performance and structural strength for the 500㎾ medium class wind turbine system. The aerodynamic configuration of the rotor blade was determined by considering the wind condition in the typical local operation region, and based on this configuration aerodynamic performance analysis was performed. The rotor blade has the shell-spar structure based on glass/epoxy composite material and is composed of shank including metal joint parts and blade. Structural design was done by the developed design program in this study and structural analysis, for instance stress analysis, mode analysis and fatigue life estimation, was performed by the finite element method. As a result, a medium scale wind turbine rotor blade with starting characteristics of 4m/s wind speed, rated power of 500㎾ at 12m/s wind speed and over 20 years fatigue life has been designed.

  • PDF

An Experimental Study on Blade Deformation of Coaxial Rotor System Using SPR(Stereo Pattern Recognition) Technique (SPR(Stereo Pattern Recognition) 기법을 이용한 동축 로터 블레이드의 변형에 대한 실험적 연구)

  • Yoo, Chanho;Yoon, Byung-Il;Chae, Sanghyun;Kim, Do-Hyung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.597-609
    • /
    • 2020
  • These days, the coaxial rotor system is used for various purposes like UAVs, Mars exploration helicopters, and the next-generation high-speed rotorcraft. A number of research projects on aerodynamic performance of rotor systems, including the coaxial configuration have been made previously. On the contrary, research on rotor blade deformation has been mainly carried out regarding the single rotor system, where such effort has not been enough on the coaxial system. Nonetheless, in case of the coaxial system, blade deformation analysis is much more important because of the complex air flow around the rotors, and that the distance between the two rotors is a key factor affects aerodynamic performance of the entire system. For these reasons, an experimental study on rotor blade deformation of the coaxial system was conducted using the Stereo Pattern Recognition(SPR) technique, one of the state-of-the-art of photogrammetry method. In this research, a small-scale coaxial rotor test stand designed by Korea Aerospace Research Institute(KARI) was used. With the same test stand, performance of the coaxial configuration had been studied before the experimental study on blade deformation, in order to find the relation between performance and blade deformation of the rotor system. Results of the performance test and the deformation study are presented in this article.

Design optimization and vibratory loads analysis of active twist rotor blades incorporating single crystal piezoelectric fiber composites (단결정 압전섬유작동기를 사용한 능동 비틀림 로터 블레이드의 최적 설계 및 진동하중 해석)

  • Park, Jae-Sang;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.85-92
    • /
    • 2007
  • This paper presents a design optimization of a new Advanced Active Blade Twist (AATR-II) blade incorporating single crystal Macro Fiber Composites (MFC) and conducts vibratory loads reduction analysis using an obtained optimal blade configuration. Due to the high actuation performance of the single crystal MFC, the AATR blade may reduce the helicopter vibration more efficiently even with a lower input-voltage as compared with the previous ATR blades. The design optimization provides the optimal cross-sectional configuration to maximize the tip twist actuation when a certain input-voltage is given. In order to maintain the properties of the original ATR blade, various constraints and bounds are considered for the design variables selected. After the design optimization is completed successfully, vibratory load reduction analysis of the optimized AATR-II blade in forward flight condition is conducted. The numerical result shows that the hub vibratory loads are reduced significantly although 20% input-voltage of the original ATR blade is used.

  • PDF

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Effect of tip-leakage flow on an isolated rotor of an axial compressor (축류압축기의 회전차에 관한 누설유동의 영향)

  • Yim Dongwook;Ahmed N. A.;Lee Myeongho;Milton B. E.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.619-622
    • /
    • 2002
  • It has been recognized that the flow in the blade passage of an axial turbomachinery rotor is very complex and is influenced by various flow phenomena, of which the tip leakage flow passing through the gap between rotor blade tip and casing plays a significant role. The losses produced due to the existence of the clearance have been known to be a large contributor of the rotor overall losses. Despite several experimental studies on non-rotating blade in the cascade configuration, and on actual rotating blades, the detailed nature of the complex flow phenomena associated with tip leakage, however, remains largely unresolved. Thus, a single-stage compressor test rig was built and measurements were taken at upstream and downstream of the rotor of this compressor at the aerodynamics laboratory of University of New South Wales. A five-hole probe and a hot-wire probe were used to measure mean and fluctuating flow parameters. The results show that tip leakage losses rise rapidly beyond tip gap of 0.01 Furthermore, the present project also identifies the regions in the wake behind the rotor of the axial compressor where such losses are concentrated. These results should be useful in the better design of rotors for improved performance of axial compressor.

  • PDF