• Title/Summary/Keyword: Rotor position alignment

Search Result 5, Processing Time 0.024 seconds

Initial Rotor Position Detection of a Toroidal SRM Using the Rate of Change of Current (전류변화율을 이용한 토로이달 SRM의 초기위치 경출 방법)

  • Yang Hyong-Yeol;Lim Young-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.26-32
    • /
    • 2005
  • Rotor position information is essential in the operation of the switched reluctance motor(SRM) drive for generation the phase current switching signals. When an incremental encoder is used as a rotor position sensor, the initial rotor position can not be detected. Some sensorless rotor position estimation methods also have the same problem. In these systems, to initially align the rotor, the forced alignment method has a delay and reverse rotation before the motor can start. Therefore it can not be acceptable for unidirectional drive systems. So the forced alignment method is not desirable in all drive systems and the research on the SRM drives should be directed to a system without rotor alignment. In this paper, a new detection method of initial rotor position using the rate of change of current is suggested. Firstly, di/dt versus θ/sub R/ reference table, which is the relation between the rate of change of current and rotor position, is generated and then the squared Euclidean distance method is used to estimate the rotor position based on the table. The simulated and experimental results are presented demonstrating the feasibility and accuracy of this method.

Control Techniques of Sensorless BLDC Motor Drive for a Vehicle Fuel Pump Application (자동차 연료펌프용 BLDC 전동기구동의 센서리스 제어기법)

  • Tran, Quang-Vinh;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1858-1864
    • /
    • 2011
  • This paper suggests a control technique of the sensorless brushless DC (BLDC) motor drive for a vehicle fuel pump application. The sensorless technique based on a comparator and a potential start-up method with high starting torque are proposed. The comparator is used to generate the commutation signals in phase with the three-phase back-EMFs. The rotor position is aligned at standstill for maximum starting torque without an additional sensor and any information of motor parameters. Also, the stator current can be easily adjusted by modulating the pulse width of the switching devices during alignment. Some experiments are implemented on a single chip 16-bit DSP controller to demonstrate the feasibility of the sensorless techniques.

A Study on Rotor Position Detection and Securing Initial Position for Switched Reluctance Motor (SRM) (스위치드 릴럭턴스 전동기 (SRM) 회전자 위치 검출 및 초기 위치확보 연구)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.141-146
    • /
    • 2020
  • In brushless DC motors (BLDC), the on/off angle of the switch is determined by the optimal alignment of the stator and rotor, while switched reluctance motors (SRM) are complex parameters with many on/off angles of the switch. It appears as a function and therefore the switching angle is variable for optimal operation. Therefore, in order to operate the switched reluctance motor (SRM) optimally, the rotor position can be detected using a high resolution position sensor and a complicated additional circuit. In this paper, rotor position detection and related position detection circuits are applied and detected by using various sensors such as encoder, hall sensor and opto interrupter among several methods to drive switched reluctance motor (SRM). Also a study on securing the initial position of the rotor was conducted.

Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상)

  • Do-Hyun, Kim;Sang-Hoon, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

Compact Gearless Elevator System Using PMSM (영구자석형 동기 전동기를 이용한 Compact Gearless 엘리베이터 시스템)

  • 안준선;김일종;배승형;강석주;이제필
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.1-3
    • /
    • 1999
  • The implementation of the compact gearless elevator system with Permanent Magnet Synchronous Motor is presented. For the purpose of the voltage suppression in the motor input side, the LRC filter is used. The automatic encoder alignment algorithm with rotor pole position is developed, and it is available in the full range of the load. The implemented system makes 11% energy savings comparing the system with the induction motor.

  • PDF