• Title/Summary/Keyword: Rotor position Estimation

Search Result 210, Processing Time 0.025 seconds

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation (역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법)

  • Park, Je-Wook;Kim, Jong-Hoon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.

Adaptive Sliding Mode Observer for the Control of Switched Reluctance Motors without Speed and Position Sensors (적응 슬라이딩 모드 관측기를 이용한 SRM의 속도 및 위치 센서 없는 제어)

  • Shin, Jae-Hwa;Yang Iee-Yoo;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.763-770
    • /
    • 2000
  • The speed and position information of the rotor are required in the speed control of SRM(Switched Reluctance Motors). This information is generally provided by shaft encoder or resolver. It is weak in the dusty, high temperature, and EMI environment. Consequntly, much attention has been given to SRM control for eliminationating the position and speed sensors. In this paper, a new estimation algorithm for the rotor position and speed for SRM drives is described. The algorithm is implemented by the sliding mode observer. The stability and robustness of the sliding observer for the parameter variations of the SRM are proved by variable structure control theory. Speed control of the SRM is accomplished by the estimated speed and position. Experiment results verify that the mode observer is able to estimate the speed and position well.

  • PDF

The Position and Speed Estimation of Switched Reluctance Motor using Sliding Mode Observer

  • Yang, Lee-Woo;Kim, Bo-Youl;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.774-779
    • /
    • 1998
  • For the speed control of motors, the position or speed sensors are necessary to obtain the position information of the rotor. Specially, SRM(Switched Reluctance Motor) needs an accurate rotor position data because both the rotor and the stator have a salient pole structure. High functional sensors like resolver or encoder are expensive and have complex connecting lines to the controller so the pure signals are apt to be mixed with noised. In the sight of SRM drives, the high temperature, heavy dust, and the EMI surroundings reduce the reliability of speed and position sensors. Therefore, the speed and position sensorless control algorithms using observer have been accepted widely. In this paper An adaptive sliding observer is described to control the SRM without speed or position sensors. The adaptive sliding observer is set on the basis of variable structure control theory. The sliding surface is constructed by current error terms and this surface guarantees the errors converge to "zero". The stability of observer is affirmed by Lyapunov stability analysis and popov's hyper stability theory.ty theory.

  • PDF

A Study on the Sensorless Control of Synchronous Reluctance Motor using Trigonometric Function (삼각함수 계산을 이용한 동기형 릴럭턴스 전동기의 센서리스 제어 연구)

  • Ahn, Joon-Seon;Lee, Geun-Ho;Kim, Sol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.30-37
    • /
    • 2011
  • Recently, SynRM has been focused by many researchers and there has been a lot of works for the industrial application of SynRM. In spite of several merits of SynRM, the information of exact rotor position is also required to perform the precise torque control, which causes the increment of cost and demerits SynRM to use in industrial application. Therefore, we studied sensorless control algorithm for the torque control of SynRM to overcome the demerits. Specially we proposed simple algorithm to estimate rotor position using trigonometric function, verified with computer simulation and experiment.

A Rotor Position Estimation of SRM with Nonlinear Inductance Variation (비선형 인덕턴스 변화특성을 고려한 SRM의 회전자 위치 추정)

  • Baik Won-Sik;Kim Nam-Hun;Kim Dong-Hee;Choi Kyeong-Ho;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.972-975
    • /
    • 2004
  • This paper presents a simulation results of sensorless control of Switched Reluctance Motor(SRM) using neural network. The basic algorithm of this scheme is based on the flux linkage characteristic according to the phase current and the rotor position. A sufficient simulation data was used for neural network training. Through measurement of the phase flux linkage and phase currents the neural network is able to estimate the rotor position. The simulation result shows some good results, and possibility of this algorithm.

  • PDF

Study of Developing Control Algorithm for Pumped-storage Synchronous Motor Drive

  • Park Shin-Hyun;Park Yo-Jip;Kim Jang-Mok;Baek Kwang-Ryul;Lim Ik-Hun;Ryu Ho-Seon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.84-89
    • /
    • 2005
  • This paper presents a control algorithm for a large salient-pole synchronous motor fed by a Load Commutated Inverter (LCI). Many papers have been presented in the past few years on the justification, design, and application of variable-speed drive. The focus of this paper is on high torque operation and the estimation of initial rotor position. The results of simulation indicate that it is possible to produce the maximum torque and estimate the initial rotor position.

Estimation of Rotor Positions in a Permanent-Magnet Synchronous Motor (영구자석형 동기전동기의 회전자 위치 추정)

  • Noh, M.;Kim, D.;Kim, M.;Park, Y.-W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.170-172
    • /
    • 2014
  • Permanent-magnet (PM) synchronous motors consist of PM rotors and ferromagnetic stators. When the rotor displaces from the center position, the air-gap magnetic field distorts, which result in unbalanced magnetic pull (UMP). In order to control the UMP and thereby reduce the vibration of a PM motor, it is necessary to measure the radial position of the rotor. In this paper, we propose a sensing method that utilizes linear Hall devices which replace the discrete Hall switches used for commutation. The results show the feasibility of the proposed sensing method.

  • PDF

A simulation of Rotor Position Estimation of SRM using Flux linkage Modeling (SRM의 쇄교자속 모델링을 통한 회전자 위치 추정기법의 시뮬레이션)

  • Baik Won-Sik;Kim Nam-Hun;Kim Dong-Hee;Choi Kyeong-Ho;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.36-39
    • /
    • 2002
  • This paper presents a simulation results of sensorless control of Switched Reluctance Motor(SRM) using neural network. The basic algorithm of this scheme is based on the flux linkage characteristic according to the phase current and the rotor position. A sufficient simulation data was used for neural network training. Through measurement of the phase flux linkage and phase currents the neural network is able to estimate the rotor position. The simulation result shows some good results, and possibility of this algorithm.

  • PDF

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.