• Title/Summary/Keyword: Rotor lift

Search Result 107, Processing Time 0.024 seconds

A Study on the High Lifting Device Equipped with the Trailing Edge Rotor for the Enhancement of Circulation Control (뒷날에 붙인 회전자로 순환유동을 강화하는 날개장치의 성능 연구)

  • Oh, Jung-Keun;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2010
  • For a long times it has been believed that the Magnus effect of the rotating cylinder could be utilized for the lifting devices applicable to marine practices. It has been reported that the rotating cylinder installed on upper deck of commercial vessel could play a energy saving role however the idea might be applicable in a very rare case in ship building practices. In this study special high lift rudder system equipped with the trailing edge rotor has been suggested in correspondence with the increasing requirement of greater rudder force. Through the numerical simulation it is cleared that the trailing edge rotor could play a role in enhancement of circulation and refinement of boundary layer of the rudder system. At the same time it is found out that the lift force of the rudder system without rotation of trailing edge rotor could be doubled when the circumferential velocity of the trailing edge rotor is equal to twice of the inflow velocity.

Performance Comparison of Two Airfoil Rotor Designs for an Agricultural Unmanned Helicopter

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: The most important element of an agricultural helicopter is the rotor blade realizing lift force. In order to improve the performance of the rotor blades, two types (KA152313 and KB203611) of airfoils were designed and compared. Methods: The nose shape of the KB203611 airfoil was 'drooped' and 'sharp' compared to the leading edge of the KA152313 airfoil. The performance of the experimental airfoils was simulated using CFD-ACE program, and lifts were measured in situ using the 'AgroHeli-4G', a prototype helicopter. Results: Simulated lifts of the blade with the KA152313 airfoil showed proper values for a wide range of angles of attack between $14^{\circ}{\sim}18^{\circ}$, while the simulated lift of the KB203611 blade exhibited maximum values near $13^{\circ}{\sim}14^{\circ}$. In the lift measurements, the range of operable angles of attack was a collective pitch angle at the grip (GP) of $12^{\circ}{\sim}18^{\circ}$ for the KA152313 blade. On the other hand, the range of angles of attack for the KB203611 blade was a GP of $12^{\circ}{\sim}14^{\circ}$. Conclusions: The blade of KA152313 performed well over a wide range of AoAs and the blade of KB203611 performed better at low AoAs. In this study, a variative airfoil blade, gradually emerging from grip to tip using the two different airfoils, was suggested.

SW05 Rotor Lift of an Unmanned Helicopter for Precise ULV Aerial Application (초미량 정밀살포용 무인헬리콥터의 SW05 로터 양력시험)

  • Koo, Young-Mo;Seok, Tae-Su;Shin, Shi-Kyoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • A small unmanned helicopter was suggested to replace the conventional spray system. Aerial application using an agricultural helicopter helps precise and timely spraying, and reduces labor intensity and environmental pollution. In this research, a rotor system (SW05) was developed and its lift capability was evaluated. Lift force for the dead weight of the helicopter was obtained at the grip pitch angle of $12^{\circ}$. As the pitch angle increased to $14^{\circ}$ and $16^{\circ}$, the payload increased to 176 N and 216 N, respectively. Compared with SW04 airfoil performance in the total lift, the SW05 airfoil showed nearly the same capacity, but the payload of the SW05 was reduced because of the increased dead weight. A rated flight condition was defined as lifting mean payload of 294 N with the grip pitch angles of $16{\sim}17^{\circ}$ at the rotor rotating speed of 850~950 rpm for the adjusted engine power. The fuel consumption would be 4.8~6.0 L/hr, and the air temperature of cooling fan should be kept below $160^{\circ}C$.

Establishment of Rotor Speed Operating Limitation for Medium Class Utility Rotorcraft (중형 기동 회전익기 로터회전수 제한 수립)

  • Park, Jonghoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.26-32
    • /
    • 2013
  • The rotorcraft makes lift and control forces by the rotor thrust. At the development phase of the rotorcraft, the operational limitations have to be established. And it shall be demonstrated to operate the rotorcraft safely within the limitations. This paper introduces establishment and evaluation results of operational rotor speed limitations for the medium class utility rotorcraft. And it shows the follow-up activities after design changes of rotor speed indicators and aural warning systems for implementing the rotor speed limitations.

Rotordynamic Transient Analysis of Vertical Sea Water Lift Pump for FPSO Deep Well (FPSO 심정용 수직 해수펌프의 로터다이나믹 과도해석)

  • Kim, Byung-Ok;Yang, Sung-Jin;Lee, Myung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.69-74
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the vertical rotor system as development of vertical sea water lift pump for FPSO deep well. In a vertical rotor system, since linearized stiffness and damping coefficients of fluid film bearing are no longer be valid, hence the transient response analysis considering a fluid film force for every journal position in the bearing needs to be required. In this study, the transient response analysis of the proposed vertical pump rotor system was carried out in dry-run and wet-run conditions, respectively. The results show that orbital vibration responses of the rotor system remain stable at rated speed and thereby operating reliability of the vertical rotor system is confirmed. To overcome complexity of calculation pr ocedure and time consuming calculation of transient analysis, the calculating technique of steady-state response analysis is also proposed. The results of steady-state response obtained by applying the proposed technique to the rotor system are good agreement with the reference results, that is, transient responses.

Aerial Application using a Small RF Controlled Helicopter (IV) - CFD Simulation of Rotor Lift - (소형 무인헬기를 이용한 항공방제기술 (IV) -로터양력의 CFD시뮬레이션 -)

  • Seok T.S.;Koo Y.M.;Sohn C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.342-348
    • /
    • 2006
  • Aerial application using an unmanned agricultural helicopter became necessary for both labor saving and timely spraying. In the previous paper, a rotor system was developed and lift capability was evaluated. The experimental results were compared with simulated predictions using the CFD-ACE program. From the simulation, the relative velocity on the top surface of the blade airfoil increased, resulting in the pressure drop. The CFD analyses were revealed that a drag resistance on the leading edge of the airfoil, a wake at the trailing edge, and a positive pressure underneath the bottom surface were observed. As the results of the simulation, total lifts of 56.8, 74.4 and $95.0kg_f$ were obtained at the 6, 8 and $10^{\circ}$ of AAT (angle of attack), respectively. The simulation results agreed reasonably up to $10^{\circ}$ of AAT. However, at a greater AAT $(<12^{\circ})$ the simulated total lift continuously increased to $105kg_f$, comparing with a decreasing experimental total lift due to the lack of engine power. At a stiff angle of $18^{\circ}$ AAT, a wake was observed at the trailing edge of the airfoil. A rated operating condition determined from the previous paper was also verified through the simulation.

Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights (고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션)

  • Hong, Sung-Boo;Kwon, Young-Min;Kim, Ji-Su;Lee, Yu-Been;Park, Byeong-Hyeon;Shin, Hyun-Cheol;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

A Study on Control for the Two-Rotor System Using Inertial Sensors (관성 센서를 이용한 투로터 시스템 제어에 관한 연구)

  • Jang, Jae Hoon;Jeung, Eun Tae;Kwon, Sung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.190-194
    • /
    • 2013
  • This paper presents experimental results of the attitude control for a two-rotor system with 3-DOF(degree-of-freedom). Two DC motors are equipped at the two ends of a rectangular beam to generate lift force and the relation between motor voltage and lift force is found experimentally. And inertial sensors are mounted at the center of the beam to measure the roll angle and a complementary filter is designed to get the angle during DC motors driving. A controller with nonlinear compensation, integrator and state feedback to achieve asymptotic tracking for a step input and reject input disturbance is designed and experimented.

Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission (기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-kwan;Kim, Seung-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF

Development of Simulation Program for Tilt Rotor Aircraft (틸트로터 항공기 비선형 시뮬레이션 프로그램 개발)

  • Yoo, Chang-Sun;Choi, Hyung-Sik;Park, Bum-Jin;Ahn, Sung-Jun;Kang, Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.