• Title/Summary/Keyword: Rotor dynamics

검색결과 405건 처리시간 0.025초

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • ;최영도;김규한;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF

ER 유체 감쇠기를 이용한 유연 회전축 계의 진동제어 (Vibration Control of Flexible Rotor Systems Using an Electro-rheological Fluid Damper)

  • 임승철;채정재;박상민;윤은규
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.365-373
    • /
    • 2002
  • This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.

고효율 수평축 조류발전 터빈의 성능해석 (Performance Analysis of High Efficiency Horizontal Axis Tidal Current Turbine)

  • 김기평;김정민;김범석;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2009
  • Nowadays renewable energy has undergone major development, however most renewable energy resources still have demerit which is under the influence of environmental factors that can not be set up the power plants or can not be generated the rated power. To wander from the point of environmental instability, the present paper looks at the tidal current energy which can supply regular electric power. It has an important merit which is more predictable than others, however the place which can be set up is limited and the turbine system must be optimized. The development of the optimized rotor blades design is urgent to obtain regular electric power using the tidal current energy. Therefore, the paper expands on this idea and presents a conceptual design of 100kW horizontal axis rotor blade for the tidal current turbine using blade element momentum (BEM) analysis. The compatibility of horizontal axis tidal turbine (HATT) is verified using a commercial computational fluid dynamics (CFD) code, ANSYS-CFX. This paper presents results of the numerical analysis, such as pressure, streak line and the performance curves with torque data for the inflow of the horizontal axis tidal current turbine (HATT).

  • PDF

CFD prediction and simulation of a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.110-116
    • /
    • 2016
  • In this study an attempt has been made to study the hydrodynamic performance of pumpjet propulsor. Numerical investigation based on the Reynolds Averaged NaviereStokes (RANS) computational fluid dynamics (CFD) method has been carried out. The structured grid and SST ${\kappa}-{\omega}$ turbulence model have been applied. The numerical simulations of open water performance of marine propeller E779A are carried out with different advance ratios to verify the numerical simulation method. Results show that the thrust and the torque are in good agreements with experimental data. The grid independent inspection is applied to verify accuracy of numerical simulation grid. The numerical predictions of hydrodynamic performance of pumpjet propulsor are carried out with different advance ratios. Results indicate that the rotor provides the main thrust of propulsor and the balance performance of propulsor is generally satisfactory. Additionally, the curve of propulsor efficiency is in good agreement with experimental data. Furthermore, the pressure distributions around rotor and stator blades are reasonable. Beyond that, the existence of tip clearance accounts for the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon.

Research on Forces and Dynamics of Maglev Wind Turbine Generator

  • Wang, Nianxian;Hu, Yefa;Wu, Huachun;Zhang, Jinguang;Song, Chunsheng
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.443-453
    • /
    • 2013
  • Maglev wind turbine generator (MWTG) technology has been widely studied due to its low loss, low maintenance cost, and high reliability. However, the dynamics of the magnetic bearing system differ fromthe those of the traditional mechanical bearing system. A horizontal axial MWTG supported with a permanent magnetic bearing is designed in this research and the radial forces and the natural frequencies of the rotor system are studied. The results show that the generatorhas a cyclical magnetic forceand an unreasonable bearing stiffness may mean that the rotor system needs to work in the resonance region; the bearing stiffness is the key factor to avoid this problem. This is the main rule of the bearing stiffness design in the MWTG, and this rule can also be used in other maglev permanent magnet motors.

등가강성모델 기반의 양방향 유체구조 연성해석을 적용한 NREL Phase VI 풍력 로터 시스템의 공력특성 평가 (Evaluation of Aerodynamic Characteristics of NREL Phase VI Rotor System Using 2-Way Fluid-Structure Coupled Analysis Based on Equivalent Stiffness Model)

  • 차진현;송우진;강범수;김정
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.731-738
    • /
    • 2012
  • 본 논문은 상용 유한요소코드인 ANSYS Workbench 12.1과 CFX 12.1을 이용하여 NREL Phase VI Rotor에 대한 공력특성을 입구풍속 7m/s 경우에 대해 연구하였다. 공탄성 효과를 고려하기 위해 약결합 양방향 유체구조 연성기법을 사용하여 타워구조를 제외한 로터파트에 대해서 해석이 수행되었다. 블레이드 끝단의 초기 피치각은 $3^{\circ}$로 설정하였고, 구조해석모델은 등가강성기법을 적용하였다. 신뢰성 있는 수렴판정 결과의 확보를 위해 블레이드 루터부의 굽힘모멘트를 실시간으로 모니터링 하였다. 해석의 신뢰성을 검증하기 위하여 해석결과를 NREL/NASA Ames 풍동 실험결과와 비교 분석하였다.

Unknown Parameter Identifier Design of Discrete-Time DC Servo Motor Using Artificial Neural Networks

  • Bae, Dong-Seog;Lee, Jang-Myung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.207-213
    • /
    • 2000
  • This paper introduces a high-performance speed control system based on artificial neural networks(ANN) to estimate unknown parameters of a DC servo motor. The goal of this research is to keep the rotor speed of the DC servo motor to follow an arbitrary selected trajectory. In detail, the aim is to obtain accurate trajectory control of the speed, specially when the motor and load parameters are unknown. By using an artificial neural network, we can acquire unknown nonlinear dynamics of the motor and the load. A trained neural network identifier combined with a reference model can be used to achieve the trajectory control. The performance of the identification and the control algorithm are evaluated through the simulation and experiment of nonlinear dynamics of the motor and the load using a typical DC servo motor model.

  • PDF

세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성 (Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing)

  • 이동현;김영철;김병옥;안국영;이영덕
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

방향성 주파수 응답 함수를 이용한 회전체 동역학 해석 (Rotordynamic Analysis Using a Direction Frequency Response Function)

  • 이동현;김병옥;전병찬;임형수
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.221-227
    • /
    • 2023
  • A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equation of motion for the rotordynamic system can be represented using complex coordinates. The directional frequency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most previous studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both positive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the unisotropic rotor.

위상 조절방법에 의한 유연 회전체의 능동제어에 관한 연구 (A study on the Active Control for Flexible Rotors Using Phase Control Method)

  • 이원창;김성원;김재실;최헌오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.280-283
    • /
    • 2005
  • This study performed by a previous research for the applying expert system to active vibration control algorithm. In order to increase productivity and efficiency, high-speed rotating machines become popular these days. They are likely to vibrate and cause machine failure even though they have small unbalance. Therefore, a high-speed rotating machine needs a balancing technique. ISO 11342 classifies flexible rotors in accordance with their balancing requirements and establishes methods of assessment of residual unbalance. But, even if they finished balancing work, they have harmful effect vibration under the high-speed rotating environment. This vibration effect is very small, but it must be removed for the improvement of the rotor's spin accuracy. This paper introduces a new active control method that remove the exciting force by a phase control. For this method, the high-speed rotating rotor was reconstructed by a flexible rotor model. The forces which excite the rotating system suppose cyclic forces, we obtain the responses by numerical method. And then through the pattern analysis about the vibraton responses, the controler generate the control force with the reverse phase and similar magnitude. This paper suggest an phase control method and shows how to improve the rotating vibration accuracy of the flexible rotor dynamics system using phase control method.

  • PDF