• 제목/요약/키워드: Rotor centrifugal deformation

검색결과 5건 처리시간 0.018초

Compensation On-line of Errors Caused by Rotor Centrifugal Deformation for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chao-Jun;Cai, Yuan-Wen;Ren, Yuan;Fan, Ya-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.1030-1041
    • /
    • 2018
  • The aim of this paper is to design a centrifugal deformation error compensation method with guaranteed performance that allows angular velocity measurement of the magnetically suspended sensitive gyroscopes (MSSGs). The angular velocity measurement principle and the structure of the MSSG are described, and the analytical model of errors caused by MSSG rotor centrifugal deformation is established. Then, an on-line rotor centrifugal deformation error compensation method based on measurement of rotor spinning speed in real-time has been designed. The common issues caused by centrifugal deformation of spinning rotors can be effectively resolved by the proposed method. Comparative experimental results before and after compensation demonstrate the validity and superiority of the error compensation method.

농형유도전동기의 회전자바에 미치는 열응력, 원심력 및 전자의의 영향 연구 (Thermal, Centrifugal and Electromagnetic Effect on the Rotor Bar of the Cage Induction Motor)

  • 이양수;이학용;한송엽;김근웅;윤종학;이정일;권중록
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.3-5
    • /
    • 1999
  • This paper deals with the effect on the stress and deformation of the rotor bar of a cage induction motor by the thermal stress, centrifugal force and electromagnetic force. We use both the thermal network method(TNM) and the finite element method(FEM) to analyze the temperature and stress of the rotor.

  • PDF

유한요소해석을 이용한 가스터빈 발전기 로터의 계자권선 변형 해석 (Investigation of the Coil Deforamtion of the Gas Turbine Generator Rotor Using Finite Element Analysis)

  • 윤완노;박현구;강명수;김준성
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.95-101
    • /
    • 2009
  • The generator for gas turbine power generation consists of the rotor which generates magnetic field, the winding coil which is the path for the field current and the wedge and retaining ring which prevents the radial movement of the coil. Relatively severe deformation was observed at the coil end section during the inspection of the generator for peaking-load operation, and the thermal-electricity and the centrifugal force were evaluated by the simple modeling of the windings to find the cause. But the simulation stress was not sufficient to induce the coil plastic deformation. The analysis result seems to be applicable to the base-load generators which runs continuously without shut down up to a year, but there had been more deformation than simulated for the generator which is started up and shut down frequently. The cause of the coil deformation was the restriction of the expansion and shrinkage. The restriction occurs when the winding coil shrinks, and the stress overwhelms the yield stress and cause the plastic deformation. The deformation is accumulated during the start-ups and shut-downs and the thermal growth occurs. The factors which induce the coil restriction during the expansion and shrinkage should be reduced to prevent the unallowable deformation. The resolutions are cutting off the field current earlier during the generator shut-down, modifying the coil end section to remove the stress concentration and making the insulation plate inserted between the coil end section and the retaining ring have the constant thickness.

  • PDF

가스터빈 발전기의 계자권선 손상에 관한 역학적 분석 (Mechanical Analysis of Field Coil Deformation in Gas Turbine Generator)

  • 한석우;권영동;최규하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.107-109
    • /
    • 1998
  • This paper presents mechanical analysis of gas turbine generator (113MVA, $3{\phi}$, 2P, 0.9PF, F class, 3600rpm, 60Hz, 13.8kV, 4.72kA, Air-Cooling) field coil deformation. Rotor end coil deformation is only appeared on turbine end but collector end coil is normal. Expansion direction of end coil is tangential not axial. Deformation appears more severe at top turn. Retaining ling is expanded by centrifugal force of coil and itself. In case friction coefficient between coil top surface and retaining ring insulation inner surface is small, coil end length ${\ell}$ does not change. However, in case friction coefficient big condition, coil end is expanded ${\Delta}{\ell}$ due to start and stop. Deformation is assumed about 30mm by watching photograph inner surface of retaining ring is coated by Teflon at manufacturing condition. Usually Teflon coating insulation surface is small friction coefficient. It's value 0.08${\sim}$0.15. However it's value exceeds more than 0.297. Since top turn deformation appears. The distortion and subsequent failure have occurred because of the lack of a sufficient slip-plane between the top field coil conductors and the inside surface of the retaining ring insulation on the turbine end of the field-winding.

  • PDF

X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구 (A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM)

  • 김성웅;홍순혁;전형용;조석수;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF