• Title/Summary/Keyword: Rotor Resistance

Search Result 255, Processing Time 0.027 seconds

On Cutting Characteristics Change of Low Temperature Cooling Tool(1st Report) - Cutting Characteristics of Cage Motor Rotor - (저온냉각공구의 절삭특성 변화 (제1보) -모터 회전자의 절삭특성)

  • 김순채;김희남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • The cutting process of cage motor rotor require high precision and good roughness. The surface roughness of cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting confition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool.

  • PDF

Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.57-67
    • /
    • 2010
  • Experimental investigations were carried out on an Axi-symmetric Body Model fitted with Pump-jet Propulsor (PJP) in the Cavitation Tunnel at Naval Science and Technological Laboratory (NSTL). The tests were intended for evaluating the propulsion characteristics of the body and propulsor. The self propulsion point of the model for two configurations was determined after finding the corrections for tunnel blockage effects and differences in model length at zero trim. The results were found to match closely with the towing tank results. The rotor and stator torques also matched closely over full range of experiment. Further experiments were carried out on the body at $4.5^{\circ}$ angle of trim to investigate the propulsive performance and assess the operational difficulties in the sea. The results indicated an increase in resistance and decrease in rotor thrust; but the balance of torques between the rotor and stator was undisturbed, causing no concern to vehicle roll.

Sliding Mode Cascade Observer for Sensorless Control of Induction Motor (유도 전동기의 센서없는 속도제어를 위한 슬라이딩 모드 축차 관측기)

  • Kim, Eung-Seok;Song, Joong-Ho;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2057-2059
    • /
    • 2001
  • A nonlinear adaptive speed controller is designed for induction motors. Only the measurement of the stator current is used to design the controller and the observers. The sliding mode cascade observer is introduced to estimate the stator current and its time derivatives. The open-loop observer are designed to estimate the rotor flux and its time derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed can be calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameter converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The experimental results are represented to investigate the validity of the proposed observer and controller.

  • PDF

A New Adaptive Sliding Mode Observer-Based Control of Induction Motors with Uncertainties (새로운 적응 슬라이딩 모드 관측기에 기초한 불확실성을 갖는 유도전동기 제어)

  • Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1276-1278
    • /
    • 2005
  • In this paper, we propose an adaptive sliding mode observer-based control of induction motors with uncertainties. The proposed adaptive sliding mode flux observer generates estimates both for the unknown parameters(load torque and rotor resistance) and for the unmeasured state variable (rotor fluxes); they converge to the corresponding true value under persistency of excitation which actually holds in typical operating conditions. The proposed controller guarantees speed tracking and bounded signals for every initial condition of the motor. Simulations show that all estimation errors tend quickly to zero so that high tracking performances are achieved both for speed and rotor flux.

  • PDF

Slip Compensation for Rotor Time Constant Variation of Induction Motor Drives (유도전동기의 회전자 시정수 변동에 대한 슬립 보상)

  • 이수원;전칠환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.487-492
    • /
    • 2000
  • This paper presents a novel method of slip-compensation for rotor time constant variation in indirect field orientation control of induction motor drives. In field oriented control due to variation of rotor time constant, decoupling between the flux and torque components of stator current is lost and hence, the performance of operation of the machine deteriorates. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations and experiments are executed.

  • PDF

A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM (SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구)

  • Oh Ju-Hwan;Lee Jin-Woo;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.

Rotor Flux Estimation of an Induction Motor using the Extended Luenberger Observer (확장된 루엔버거 관측기를 이용한 유도전동기 회전자 자속 추정)

  • 조금배;최연옥;정삼용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.115-124
    • /
    • 2001
  • In this paper, authors propose a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on the extended Luenberger Observer theory. Extended Luenberger Observer requires minimal solution of nonlinear partial differential equation on its coordinate transformation and linearization needed on a nonlinear observer design in general. The proposed rotor flux observer is derived from the 2 phase model of induction motor on the orthogonal coordination and it has the reduce gain matrix. Simulation and experimentation were performed under the conventional indirect vector control and direct vector control with the proposed observer at different rotor resistance. Simulation results show that the convergence of the proposed observer is influenced by the chosen eigenvalues. Experimentation results on load operation show the direct vector control with the proposed observer is better than the indirect vector control to maintain the characteristics of the vector control.

  • PDF

Adaptive Output Feedback Speed Control of Induction Motorswith Uncertain Rotor Resistance and Load Torque

  • Hwang, Young-Ho;Yang, Hai-Won;Kim, Hong-Pil;Kim, Hyung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.64.4-64
    • /
    • 2002
  • $\textbullet$ Contents 1 Introduction $\textbullet$ Contents 2 Problem Statement $\textbullet$ Contents 3 Adaptive Output Feedback Control Design $\textbullet$ Contents 4 Stability analysis $\textbullet$ Contents 5 Simulation Result $\textbullet$ Contents 6 Conclusions

  • PDF

Performance of Adaptive Maximum Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives (유도전동기 드라이브에서의 단위전류당 최대토크적응 제어기의 다운전점에서의 성능 연구)

  • Kwon, Chun-Ki;Kong, Yong-Hae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.584-593
    • /
    • 2018
  • The highly efficient operation of induction motors has been studied in the past years. Among the many attempts made to obtain highly efficient operation, Maximum Torque Per Amp (MTPA) controls in induction motor drives were proposed. This method enables induction motor drives to operate very efficiently since it achieves the desired torque with the minimal stator current. This is because the alternate qd induction motor model (AQDM) is a highly accurate mathematical model to represent the dynamic characteristics of induction motors. However, it has been shown that the variation of the rotor resistance degrades the performance of the MTPA control significantly, thus leading to its failure to satisfy the maximum torque per amp condition. To take into consideration the mismatch between the actual value of the rotor resistance and its parameter value in the design of the control strategy, an adaptive MTPA control was proposed. In this work, this adaptive MTPA control is investigated in order to achieve the desired torque with the minimum stator current at multiple operating points. The experimental study showed that (i) the desired torque was accurately achieved even though there was a deviation of the order of 5% from the commanded torque value at a torque reference of 25 Nm (tracking performance), and (ii) the minimum stator current for the desired torque (maximum torque per amp condition) was consistently satisfied at multiple operating points, as the rotor temperature increased.

Improved Sensorless Control of Induction motor by Rotor Resistance Compensation (슬립각속도를 사용하는 회전자 저항 보정에 의한 유도전동기의 센서리스 속도제어 개선)

  • Park, Kang-Hyo;Kwon, Young-Ahn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.886-890
    • /
    • 2011
  • Induction motors are relatively cheap and rugged machines. For the vector control of induction motors, a position or speed sensor is needed. But a speed sensor increases motor cost and reduces reliability in harsh environment. Recently, many studies have been performed for sensorless speed control. This paper investigates an improved flux observer with the parameter error compensation for a sensorless induction motor. The proposed algorithm is verified through simulation and experiment.