• Title/Summary/Keyword: Rotor Radius

Search Result 73, Processing Time 0.033 seconds

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • 윤진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.906-910
    • /
    • 2003
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearings considering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

  • PDF

Characteristic Comparison of IPMSM according to Armature Winding (전기자 권선 방법에 따른 매입형 영구자석 동기 전동기의 특성 비교)

  • Park, Su-Beom;Kwon, Soon-O;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.785-786
    • /
    • 2006
  • Performance comparison of IPMSMs with distributed and concentrated winding is presented in this papcr. Two IPMSMs have been designed and fabricated with identical rotor dimension, air-gap length, series turn number, stator outer radius, and axial length except winding configuration. Basic parameters and machine performance, such as resistances, back emf, output torque, and efficiency, are compared. From the comparison results, motor design considering winding configuration is discussed.

  • PDF

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • Yoon, Jinwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.779-784
    • /
    • 2004
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearingsconsidering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

Design of a Small-Scale Motor-Generator System for a Large Wind Turbine (대형 풍력발전기용 소형 모터-발전기 시스템 설계)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.

CHARACTERISTIC ANALYSIS OF AN ARC TYPE LINEAR PULSE MOTOR (아크형 직선 펄스전동기의 특성해석)

  • Shin, Pan-Seok;Cho, Yun-Hyun;Suh, Jea-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.987-989
    • /
    • 1993
  • In this paper, the characteristics of an arc-type linear pulse motor(ALPM) with permanent magnet are analysed using analytical and 2-D finite element method. To verify the analysing method. An ALPM which can be used as actuators of servo systems is designed and constructed. The stator of the ALPM has a permanent magnet and 4 pole exciters in order to provide a detent and thrust force. It's rotor radius is 70 mm and average torque of 60 $N{\cdot}cm$. The test results of the prototype ALPM have reasonably good agreement with those of analytic solutions.

  • PDF

Optimal Design of Squeeze Film Damper Using an Enhanced Genetic Algorithm (향상된 유전알고리듬을 이용한 스퀴즈 필름 댐퍼의 최적설계)

  • 김영찬;안영공;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.805-809
    • /
    • 2001
  • This paper is presented to determine the optimal parameters of squeeze film damper using an enhanced genetic algorithm (EGA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is minimization of a transmitted load between bearing and foundation at the operating and critical speeds of a flexible rotor. The present algorithm was the synthesis of a genetic algorithm with simplex method for a local concentrate search. This hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution and can find both the global and local optimum solution. The numerical example is presented that illustrated the effectiveness of enhanced genetic algorithm for the optimal design of the squeeze film damper for reducing transmitted load.

  • PDF

Discharge Characteristics of Rotating Orifices with Length-to-Diameter Ratios and Inlet Corner Radii (길이 대 직경 비와 입구 모서리 반경에 따른 회전 오리피스의 송출 특성)

  • Ha, Kyoung-Pyo;Kang, Se-Won;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.957-966
    • /
    • 2000
  • The effect of rotation on the discharge coefficient of orifices with various length-to-diameter ratios and two different inlet corner radii was studied. Length-to-diameter ratios of the orifices range from 0.2 to 10, while the inlet shapes are square edged, or round edges of radius-to-diameter ratio of 0.5. From the experiment, we found that rotational discharge coefficient and Rotation number, when based on ideal exit velocity of the orifice considering momentum transfer from the rotor, describe the effect of rotation very well. In this study, the discharge coefficients of rotating orifices are shown to behave similar to those of the well-known non-rotating orifices. For both rotating and non-rotating orifices, the discharge coefficients increase with the length-to-diameter ratio until a maximum is reached. The flow reattachments in the relatively short orifices are responsible for the increase. The coefficient then decreases with the length-to-diameter ratio due to the friction loss along the orifice bore. The length-to-diameter ratio that yields maximum discharge coefficient, however, increases with the Rotation number because the increased flow-approaching angle requires larger length-to-diameter ratio for complete reattachment. The length-to-diameter ratio for complete reattachment is shorter for round edged orifices than that of square edged orifices by about a unit length-to-diameter ratio.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD (3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구)

  • Oh, S.H.;Lee, S.H.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.

Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance (가공 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF