• 제목/요약/키워드: Rotational temperature

검색결과 348건 처리시간 0.022초

적외선열화상 이미지법과 패턴 인식을 이용한 철도차량 회전기기의 비파괴 진단 (Non-Destructive Diagnosis of Rotational Components of a Railway Vehicle Using Infrared Thermography and Pattern Recognitions)

  • 권석진;김민수;서정원;강부병
    • 비파괴검사학회지
    • /
    • 제36권4호
    • /
    • pp.300-307
    • /
    • 2016
  • 차량 부품의 고장은 운용 중단과 탈선 결과로 나타날 수 있으며 차량 주요부품의 이상상태를 진단하는 것은 중요하다. 온도를 이용한 진단 방법은 철도차량 회전기기의 -예를 들면, 베어링, 감속기, 견인전동기, 디스크- 비정상 상태를 진단하는 기본적인 방법이다. 본 연구에서는 적외선열화상과 패턴 이미지법을 이용하여 차량 하부의 회전기기의 이상 진단시스템을 구축하여 현장시험을 수행하였다. 그 이상상태 진단시스템은 차량 하부 회전기기의 이상발열 상태를 진단할 수 있었으며 비정상 상태를 평가할 수 있었다.

Optimal Conditions for Hepatitis B Cove Antigen Production in Shaked Flask Fermentation

  • Tey Beng Ti;Yong Kok Hoe;Ong Hong Puay;Ling Tau Chuan;Ong Swee Tin;Tan Yan Peng;Ariff Avbakariya;Tan Wen Siang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.374-378
    • /
    • 2004
  • The effects of various environmental factors such as pH (5, 6, 7, 8 and 9), temperature (30, 37 and $40^{\circ}C$) and rotational speed (150, 200 and 250 rpm) on the growth and the hepatitis B core antigen (HBcAg) production of Escherichia coli W3110IQ were examined in the present Study. The highest growth rate is achieved at pH 7, $37^{\circ}C$ and at a rotational Speed of 250 rpm which is 0.927 $h^{-1}$. The effect of pH on cell growth is more substantial compared to other parameters; it recorded a $123\%$ different between the highest growth rate (0.927 $h^{-1}$) at pH 7 and lowest growth at pH 5. The highest protein yield is achieved at pH 9, rotational speed of 250 rpm and $40^{\circ}C$. The yield of protein at pH 7 is $154\%$ higher compared to the lowest yield achieved at pH 5. There is about $28\%$ different of the protein yield for the E. coli cultivated at 250 rpm compared to that at 150 rpm which has the lowest HBcAg yield. The yield of protein at $40^{\circ}C$ is $38\%$ higher compared to the lowest yield achieved at $30^{\circ}C$.

회전식 점도측정기를 이용한 ER 및 MR유체의 특성 비교 (The Comparison of Properties of ER and MR Fluids Using a Rotational Viscometer)

  • 이영록;전도영
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.73-81
    • /
    • 1999
  • 회전식 점도 측정기를 이용하여 상용화된 전기유변(electrorheological, ER)유체와 자기유변(magnetorheological, MR)유체의 특성을 비교하여 이를 이용한 장치 설계시 두 유체 중에 유리한 것을 선택하는데 도움이 되고자 하는 것이 본 논문의 의도이며, 이러한 유체의 특성에서 전단변형률의 변화에 따른 전단응력의 변화, 온도변화에 따른 전단응력의 변화, 작용하는 장의 세기에 따른 전단응력의 변화 등을 비교하였다. 온도의 변화에 따른 유체의 특성 변화는 MR유체가 ER유체보다 적게 받는 경향이 있었다. 두 유체의 응용 예로서 제작된 댐퍼의 경우에 유압 시험기를 이용하여 인장과 압축될 때 장의 On/Off에 따른 시간지연과 감쇄력을 비교하였다.

  • PDF

Experimentally Measured Rotational Reorientation Time of Coumarin 6 Laser Dye in Ethanol and Acetonitrile Solvents

  • Renuka, C.G.;Raikar, U.S.
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.119-122
    • /
    • 2005
  • The photophysical properties of coumarin 6 laser dye have been studied in two solvents; ethanol and acetonitrile using steady-state fluorescence depolarization technique. The experimentally measured reorientation time of coumarin 6 is more or less the same in given solvents at particular temperature. It is found that coumarin 6 rotates slower in acetonitrile than in ethanol especially at higher values of viscosity over temperature. We also measure the ground and excited state dipole moments of coumarin 6 by solvent perturbation method. The results found that excited state dipole moment is greater than ground state dipole moment, which indicates that excited state is more polar than the ground state.

  • PDF

회전식 Barrel에 의한 레오로지 소재 제조장치 (Fabricating Apparatus of Rheological Material by Rotational Barrel)

  • 김태원;서판기;오세웅;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.358-361
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

회전.비회전 복합 히트파이프 개발과 성능 시험 (Performance Test and Development of the Composite Heat Pipe with Rotating and Static Heat Pipe)

  • 이영수;장영석
    • 태양에너지
    • /
    • 제18권4호
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this research is to study the charateristics and manufacture of a composite heat pipe system with rotational and static pipe. A composite heat pipe system were tested to obtain the relationship between the expansion injector and auxiliary expansion for the motion of the working fluid by the experimental results. In addition the heat transport characteristics were found based on wall temperature of rotor, expansion injector, storage tank and vapor temperature. Water is used as working fluid of heat pipes. As the results of experiments, the composite heat pipe was operated for long times, 10 hour above with various rotational speed in performance. There were a few unexpected data by the capillary pumped loop at small working fluid, but as a whole the testing was successful.

  • PDF

회전식 바렐에 의한 단조용 레오로지 소재 제조 (Fabricating Apparatus of Rheological Material for forging by Rotational Barrel)

  • 김태원;서판기;오세웅;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.645-648
    • /
    • 2005
  • The rotational barrel type equipment has been designed for the new rheology fabrication process. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed and rotation time of barrel. The barrel surface can be controlled the temperature by the induction heating and cooling system. Many experiments were widely examined by using this system with controlling the rotation speed and the rotation time. The possibility for the rheoforming process was investigated with microstructural characteristics.

  • PDF

탈수소 열처리 공정에 의한 원심주조 메탈베어링의 제조 시스템 (Manufacturing System of Centrifugal Cast Metal Bearing by Dehydrogenation)

  • 김정훈;김충구;변재영;이은숙;양지웅;최원식
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.111-117
    • /
    • 2020
  • Centrifugal casting is suitable for producing hollow-products using centrifugal force. Bush type metal bearings are the key parts that facilitate the rotational movement of various machinery. Metal bearings produced by conventional centrifugal casting machines show rotational imbalance. Therefore, after injecting a large amount of material, the product's precision is secured in the secondary processing. Rotational imbalance is caused by the force acting on the rotary disc plate. In order to minimize rotational imbalance, NASTRAN was used for the optimal design and structural analysis. It was concluded that the rotating plate of the conventional centrifugal casting machine should be prevented from tilting. For this purpose, the location & thickness of the stiffeners were obtained through the optimum design. In the conventional centrifugal casting machine, both ends of the product are lower in temperature than the center part, so internal stress occurs. This solves this problem by inserting a heating coil into the rotating plate.

MODEL CALCULATIONS OF THE UV - EXCITED MOLECULAR HYDROGEN IN INTERSTELLAR CLOUDS

  • Lee, Dae-Hee;Pak, Soo-Jong;Seon, Kwang-Il
    • 천문학논총
    • /
    • 제20권1호
    • /
    • pp.7-10
    • /
    • 2005
  • We have calculated 2448 interstellar cloud models to investigate the formation and destruction of high rotational level $H_2$ according to the combinations of five physical conditions: the input UV intensity, the $H_2$ column density, cloud temperature, total density, and the $H_2$ formation rate efficiency. The models include the populations of all the accessible states of $H_2$ with the rotational quantum number J < 16 as a function of depth through the model clouds, and assume that the abundance of $H_2$ is in a steady state governed primarily by the rate of formation on the grain surfaces and the rates of destruction by spontaneous fluorescent dissociation following absorption in the Lyman and Werner band systems. The high rotational levels J = 4 and J = 5 are both populated by direct formation into these levels of newly created molecules, and by pumping from J = 0 and J = 1, respectively The model results show that the high rotational level ratio N(4)/N(0) is proportional to the incident UV intensity, and is inversely proportional to the $H_2$ molecular fraction, as predicted in theory.

Response of rotational parameter in the stagnation point with motile microorganism: Unsteady nanofluid

  • Mohamed A. Khadimallah;Imene Harbaoui;Sofiene Helaili;Abdelhakim Benslimane ;Humaira Sharif ;Muzamal Hussain;Muhammad Nawaz Naeem;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.241-249
    • /
    • 2023
  • The unsteady mixed convection Casson type MHD nanofluid flow in the stagnation point with motile microorganism around a spinning sphere is investigated. Time dependent flow dynamics is considered. Similarity transformations have been employed to transfer the governing partial differential structure into ordinary differential structure. The impact of distinct parameters is examined via tables and graphs. The impact of rotational parameter (spin) on profiles of velocity profiles, temperature and concentration is revealed for unsteady mixed convection Casson type MHD nanofluid flow. It is observed that it is clear that rotational parameter has a great effect on non-dimensional primary velocity component but rotational parameter has a slight impact on non-dimensional secondary velocity component. The validity of the current investigation is authorized through comparing the existing outcomes with previous published literature.