• Title/Summary/Keyword: Rotational jump

Search Result 11, Processing Time 0.02 seconds

Effects on Stability of Rotational Direction after Rotational Jump-Landings (회전점프-착지 시 회전방향이 안정성에 미치는 영향)

  • Park, Jun Sung;Woo, Byung Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.3
    • /
    • pp.80-86
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effects of three rotational jump conditions (standing jump, left rotational jump and right rotational jump) on stability through center of pressure (COP) and EMG variables analysis. Method: A total of 16 college students (age: 24.13 ± 7.17 years, height: 169.24 ± 8.23 cm, weight: 65.65 ± 13.88 kg) participated in this study. The study used wireless two COP plates and wireless eight channel EMG. The analyized variables were 11 variables for COP and RMS for EMG, which were analyzed using one-way analysis of variance with repeated measures according to three rotational jump conditions. Results: Among the COP variables, left rotational jump (LRJ) and right rotational jump (RRJ) were larger than standing jump (SJ) for left and right amplitude, area, total displacement, and average velocity for both feet among the variables of COP, and for area of the left foot, RRJ was larger than that of SJ. Among the EMG variables, there was no statistical difference between the muscle activations, but the muscle activity was significantly higher in the order of RRJ, LRJ, and SJ according to direction of rotation. Conclusion: Although the results of COP and EMG were not consistent through this study, it can be expected that the differences in COP was due to the amount of rotation during rotational jump-landing in the left and right directions, and that the EMG is determined by the lateral movements required for rotation.

Characterization of Internal Reorientation of Methyl Group in 2,6-Dichlorotoluene

  • Nam-Goong, Hyun;Rho, Jung-Rae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.35-55
    • /
    • 2009
  • The two correlation times previously obtained in our coupled $^{13}C$ relaxation measurement for the methyl group in 2,6-dichlorotoluene may be used as a criterion for evaluating the reorientation dynamics of an internal rotor. We numerically tested an extended diffusion model and the Smoluchowski diffusion equation to see how the rotational inertial effect and jump character contribute to the internal correlation time ratio of the internal rotor. We also analytically solved the general jump model with three different rate constants in a sixfold symmetric potential barrier. By assuming that the internal rotation of the methyl group in 2,6-dichlorotoluene can be described in terms of jumps among sixfold harmonic potential wells, we can conclude that the jump model satisfactorily reproduce the experimental data and the rate for sixfold jump is at least 1.53 times as great as that of a threefold jump.

The Kinematical Analysis of Li Xiaopeng Motion in Horse Vaulting (도마운동 Li Xiaopeng 동작의 운동학적 분석)

  • Park, Jong-Hoon;Yoon, Sang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.81-98
    • /
    • 2003
  • The purpose of this study is to closely examine kinematic characteristics by jump phase of Li Xiaopeng motion in horse vaulting and provide the training data. In doing so, as a result of analyzing kinematic variables through 3-dimensional cinematographic using the high-speed video camera to Li Xiaopeng motion first performed at the men's vault competition at the 14th Busan Asian Games, the following conclusion was obtained. 1. It was indicated that at the post-flight, the increase of flight time and height and twisting rotational velocity has a decisive effect on the increase of twist displacement. And Li Xiaopeng motion showed longer flight time and higher flight height than Ropez motion with the same twist displacement of entire movement. Also the rotational displacement of the trunk at peak of COG was much short of $360^{\circ}$(one rotation) but twist displacement showed $606^{\circ}$. Likewise, Li Xiaopeng motion was indicated to concentrate on twist movement in the early flight. 2. It was indicated that at the landing, Li Xiaopeng motion gets the hip to move back, the trunk to stand up and the horizontal velocity of COG to slow down. This is thought to be the performance of sufficient landing, resulting from large security of rotational displacement of airborne and twist displacement. 3. It was indicated that at the board contact, Li Xiaopeng motion made a rapid rotation uprighting the trunk to recover slowing velocity caused by jumping with the horse in the back, and has already twisted the trunk nearly close to $40^{\circ}$ at board contact. Under the premise that elasticity is generated without the change of the feet contacting the board, it will give an aid to the rotation and twist of pre-flight. Thus, in the round-oH phase, the tap of waist according to the fraction and extension of hip joint and arm push is thought to be very important. 4. It was indicated that at the pre-flight, Li Xiaopeng motion showed bigger movement than the techniques of precedented studies rushing to the horse, and overcomes the concern of relatively low power of jump through the rapid rotation of the trunk. Li Xiaopeng motion secured much twist distance, increased rotational distance with the trunk bent forward, resulting in the effect of rushing to the horse. 5. At horse contact, Li Xiaopeng motion makes a short-time contact, and maintains horse take-off angle close to vertical, contributing to the increase of post-flight time and height. This is thought to be resulted from rapid move toward movement direction along with the rotational velocity of trunk rapidly earned prior to horse contact, and little shave of rotation axis according to twist motion because of effective twist in the same direction.

An NMR Study on Dynamics of$ AX_3$ Spin System as Illustrated By Methyl Group in 2,6-Dichlorotoluene

  • 노정래;현남궁;이조웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1326-1333
    • /
    • 1998
  • The study of coupled relaxation for methyl spin system in 2,6-dichlorotoluene was performed on the basis of the magnetization mode formalism. Using five initial perturbing pulse sequences, eight experimntal data sets were obtained, which were fitted with theoretical expressions with nine spectral density parameters. The same experiment was carried out at both 50.3 MHz and 125.6 MHz in carbon frequency. The measured spectral densities at both fields are similar in the exception of that related with carbon random field term. Furthermore, from the dipolar spectral density, the physical values may be extracted depending on the model of molecular reorientation. For example, it was assumed that the molecular framework undergoes asymmetric diffusive rotational process and methyl group reorients by either diffusive rotation about its symmetry axis or jump among internal rotational potential minima.

Miniature Jumping Robot Using SMA Coil Actuators and Composite Materials (형상기억합금 코일 구동기와 복합재를 이용한 소형 도약 로봇 설계 및 제작)

  • Jung, Sun-Pill;Koh, Je-Sung;Jung, Gwang-Pil;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.136-142
    • /
    • 2013
  • In nature, many small insects are using jumping as a survival strategy. Among them, fleas jump in a unique method. They use an elastomer, 'Resilin', an extensor muscle and a trigger muscle. By contracting the extensor muscle, the elastic energy, that makes a flea to jump, is stored in the resilin. After storing energy, the trigger muscle begins contracting and pulling the extensor muscle. When the extensor muscle crosses the rotational joint, direction of torque generated from the extensor muscle reverses, 'torque reversal mechanism'. Simultaneously, the elastic energy stored in the resilin releases rapidly and is converted into the kinetic energy. It makes a flea to jump 150 times its body length. In this paper, miniaturized jumping robot using flea-inspired catapult mechanism is presented. This mechanism is based on the 4-bar linkage and the reversal joint and is actuated by Shape Memory Alloy (SMA) coiled springs describing the flea's muscle. The robot prototype is fabricated by SCM process using glass fiber prepregs and a sheet of polyimide film. The prototype is 20mm link length, 34mm width and 2.0g weight and can jump 103cm.

NMR Relaxation Study of Segmental Motions in Polymer-n-Alkanes

  • Chung Jeong Yong;Lee Jo Woong;Park Hyungsuk;Chang Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.296-306
    • /
    • 1992
  • $^{13}C$ spin-lattice relaxation times were measured for n-alkanes of moderate chain length, ranging from n-octane to n-dodecane, under the condition of proton broad-band decoupling within the temperature range of 248-318 K in order to gain some insight into basic features of segmental motions occurring in long chain ploymeric molecules. The NOE data showed that except for methyl carbon-13 dipole-dipole interactions between $^{13}C$ and directly bonded $^1H$ provide the major relaxation pathway, and we have analyzed the observed $T_1data$ on the basis of the internal rotational diffusion theory by Wallach and the conformational jump theory by London and Avitabile. The results show that the internal rotational diffusion constants about C-C bonds in the alkane backbone are all within the range of $10^9\;-10^10\;sec^{-1}$ in magnitude while the mean lifetimes for rotational isomers are all of the order of $10^{-11}\;-10^{-10}$ sec. Analysis by the L-A theory predicts that activation energies for conformational interconversion between gauche and trans form gradually increase as we move from the chain end toward the central C-C bond and they are within the range of 2-4 kcal/mol for all the compounds investigated.

Effects of visual selection and rotation order on take-off and landing during sequential rotational jumping (연속 회전점프 시 시각선택과 회전순서가 도약과 착지에 미치는 영향)

  • Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.701-709
    • /
    • 2022
  • The purpose of this study was to compare the differences according to the visual selection and rotation order during sequential rotational jump for female dancers of a Korean ballet company by classifying them into take-off and landing sections. 10 subjects (age: 26.0±2.9 yrs, height: 163.4±3.3 cm, weight: 46.8±3.6 kg, ballet career: 12.3±5.9 yrs) participated in the study. Using a 3D motion analyzer and a force platform, the height of the body center and the ground reaction force during take-off and landing were measured. According to the visual condition (using both eyes, using left eye, using right eye) and rotation order (first rotation, second rotation), it was analyzed through repeated measurement two-way analysis. Height of the CM was higher in the first jump. In take-off, Fx was lateral force of left foot and medial force of right foot were strong in second rotation, and Fy was forward force was strong in first rotation of right foot. Fz was no significant. In landing, Fy showed backward force was strong when landing the second time from the left foot, and the backward force was strong when using the left sight from the right foot. Fz was strong on the second landing on the left foot and the first landing on the right foot.

A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System (절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구)

  • 윤석철
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

A Kinetics Analysis of Forward 11/2 Somersault on the Platform Diving (플랫폼 다이빙 앞으로 서서 앞으로 11/2회전 동작의 운동역학적 분석)

  • Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to perform the kinetic analysis of forward $1\frac{1}{2}$ somersault on the platform diving. Six men's diving players of the Korea national reserve athletes participated in this study. The variables were analyzed response time, velocity, center of mass (COM), angle, center of pressure (COP) and ground reaction force (GRF) of motion. For measure and analysis of this study, used to synchronized to 4 camcorder and 1 force plate, used to the Kwon3D XP (Ver. 4.0, Visol, Korea) and Kwon GRF (Ver. 2.0, Visol, Korea) for analyzed of variables. The results were as follows; Time factor were observed in maximum knee flexion depending on the extent of use at phase 1 of take-off to execute the somersault. This enabled the subject to secure the highest possible body position in space at the moment of jumping to execute the somersault and prepare for the entry into the water with more ease. Regarding the displacement of COM, all subjects showed rightward movement in the lateral displacement during technical execution. Changes in forward and downward movements were observed in the horizontal and vertical displacements, respectively. In terms of angular shift, the shoulder joint angle tended to decrease on average, and the elbow joints showed gradually increasing angles. This finding can be explained by the shift of the coordinate points of body segments around the rotational axis in order to execute the half-bending movement that can be implemented by pulling the lower limb segments toward the trunk using the upper limb segments. The hip joint angles gradually decreased; this accelerated the rotational movement by narrowing the distance to the trunk. Movement-specific shifts in the COP occurred in the front of and vertical directions. Regarding the changes in GRF, which is influenced by the strong compressive load exerted by the supporting feet, efficient aerial movements were executed through a vertical jump, with no energy lost to the lateral GRF.

Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper (점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.50-58
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

  • PDF