• 제목/요약/키워드: Rotational Viscoelastic Damper

검색결과 4건 처리시간 0.017초

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • 제3권2호
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

송전선에 의해 송전철탑에 전달되는 풍하중 저감을 위한 회전형 점탄성감쇠기 (Rotational Viscoelastic Dampers for the Mitigation of Wind Loads on Transmission Tower Transferred from Transmission Lines)

  • 문병욱;민경원
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.420-427
    • /
    • 2006
  • In this study, wind loads transmitted to a transmission tower from transmission lines are mitigated using rotational viscoelastic dampers. First, the wind load characteristics in a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower. From the result of the stochastic analysis, the background component of the overturing moment caused by the wind loads acting on the transmission lines are found to have considerable portion in the total overturning moment. Based on this observation result, a strategy Installing rotational viscoelastic damper (VED) between tower arm and transmission line is proposed for the mitigation of the transmission line reactions, which play a role as dynamic loads on a transmission tower. For the purpose of verification, time history analysis is conducted for different wind velocities and VED parameters. The analysis result shows that the rotational VED is effective for the mitigation of the background component rather than the resonance component of the transmission line reactions and achieves the reduction ratio of 50% even for higher wind speed.

점탄성감쇠기를 이용한 송전철탑 풍하중의 저감 (Wind Load Mitigation for Transmission Tower using Viscoelastic Damper)

  • 민경원;박지훈;문병욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (I-Theoretical analysis)

  • He, Xiao-Yu;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • 제3권2호
    • /
    • pp.157-174
    • /
    • 2016
  • Based on classical viscoelastic damper, a brand-new damper is designed by the change of simple construction to implement vibration control for both translational vibration and rotational vibration simultaneously. Theoretic analysis has been carried out on the restoring force model and the control parameters. Two improved models are presented to obtain high simulation precision. The influence of the size, shape of the viscoelastic material, the ambient temperature and the response frequency on the vibration control effect is analyzed. The numerical results show that the new type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform and the response control effect has complicated relations with aforementioned related factors.