• Title/Summary/Keyword: Rotational Speed

Search Result 1,122, Processing Time 0.038 seconds

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

Diagnosis of Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing

  • Park, Jong-Po
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.590-596
    • /
    • 2000
  • Cause of excessive vibration with twice the rotational speed of a two-pole generator rotor for the fossil power plants was investigated. The two-pole generator rotor, treated as a typically asymmetric rotor in vibration analysis, produces asynchronous vibration with twice the rotational speed, sub-harmonic critical speeds, and potentially unstable operating zones due to its own inertia and/or stiffness asymmetry. This paper introduces a practical balancing procedure, and presents the results of the investigation on sources of the excessive vibration based on the experimental vibration data of the asymmetric two-pole rotor in balancing.

  • PDF

The Design, Fabrication and Characteristic Experiment of Rotational Speed Sensor for SMART Main Coolant Pump (일체형원자로 냉각재순환펌프용 회전속도측정기 설계 및 특성시험)

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.774-776
    • /
    • 2001
  • This paper describes the finite element analysis(FEA) for the design of common core-type and separated core-type rotational speed sensor(RSS) for SMART MCP and compared with the low/ high speed characteristics of prototype RSS. As a result, it is shown that the characteristics of prototype RSS have a good agreement with the results of FEA.

  • PDF

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong-Kee;Koo, Hyun-Chul;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.27-32
    • /
    • 2002
  • The turbopump inducer cavitation is very important for the success of a liquid rocket engine. In this study, the performance test and cavitation performance test were carried out at various rotational speeds with two inducers of different diameter. The rotational speed was varied by 4000, 6000, and 8000 rpm, and the size effect was tested for the normal inducer and twice-enlarged one. The hydraulic performance results showed that the similarity was satisfied over the entire test range of the present study. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for the large tip clearance. The cavitation performance test results showed that the breakdown NPSH increased as the flow coefficient, and was not affected by the rotational speed.

An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator (회전식 폐열회수 환기유닛의 공기누설 및 전열특성에 관한 실험적 연구)

  • Han Hwataik;Kim Min-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1197-1203
    • /
    • 2004
  • This study investigates the air leakage and heat transfer characteristics of a rotary-type air-to-air heat exchanger with a fiber polyester matrix. The leakage airflow rate is measured using a tracer gas method for various ventilation rates and rotational speeds of the matrix wheel. A correlation equation for air leakage is obtained by combining the pressure leakage and the carryover leakage. The pressure leakage is observed to be a function of ventilation airflow rate only, and the carryover leakage is found to be a linear function of rotational speed. The real efficiency of the heat exchanger can be obtained from its apparent efficiencies by taking into account the air leakage ratio. As the ventilation rate increases, the heat recovery efficiency decreases. As the rotational speed of the matrix increases, the efficiency increases initially but reaches a constant value for the rotational speeds over 10 rpm.

Effect of HDD Rotational Speed Variation on Filtration of Particles by Recirculation Filter (하드 디스크 드라이브 회전수 변화가 내부 필터 입자 포집 성능에 미치는 영향)

  • Lee, Dae-Yeong;Park, Hui-Seong;Yu, Yong-Cheol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1069-1076
    • /
    • 2002
  • Contamination particles in a hard disk drive can cause serious problems including slider crash and thermal asperities. A recirculation filter is typically installed in the hard disk drive to remove the particles. Measurements and theoretical predictions of particle concentration decay with the filter are carried out for a commercially available HDD. Especially, the effect of disk rotational speed on the particle capture efficiency is investigated. Results show that filter efficiency is higher for higher disk rotational speed.

NAVIER-STOKES SIMULATION OF A VISCOUS MICRO PUMP WITH A SPIRAL CHANNEL (스파이럴 채널을 가진 초소형 점성 펌프의 Navier-Stokes 해석)

  • Seo, J.H.;Kang, D.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • The Navier-Stokes equations are solved to study the flow characteristics of a micro viscous pump. The viscous micropump is consisted of a stationary disk with a spiral shaped channel and a rotating disk. A simple geometrical model for the tip clearance is proposed and validated by comparing computed flow rate with corresponding experimental data. Present numerical solutions show satisfactory agreement with the corresponding experimental data. The tip clearance effect is found to become significant as the rotational speed increases. As the pressure load increases, a reversed flow region is seen to form near the stationary disk. The height of the channel is shown to be optimized in terms of the flow rate for a given rotational speed and pressure load. The optimal height of the channel becomes small as the rotational speed decreases or the pressure load increases. The flow rate of the pump is found to be in proportion to the width of channel.

A New Track-following Control Method Using Disturbance Observer with the Freedom of Gain and Frequency Adaptation (이득의 자유도와 주파수 적응성을 가진 외란 관측기를 사용한 새로운 트랙 추종 제어 기법)

  • Jung, Woo-Min;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.360-362
    • /
    • 2006
  • This paper proposes a new track-following control method using disturbance observer with the freedom of gain and frequency adaptation in optical disk drive system. Recent ODDs use smaller track pits, higher rotation speed and broader rotational speed variations to increase the data capacity and data transfer rate. This cause the degradation of track-following performance by increasing the disturbance of the rotary system. In this paper, we discussed on a DOB structure that efficiently attenuate the disturbance without effecting the overall feedback loop characteristics on CLV type ODD which uses a higher and broader range of rotational speed. DOB structure uses two band pass filter. We analyzed the track-following performance sensitivity on rotational frequency variance and gain changes. This analysis is done on a computer simulation environment and actual ODD product.

  • PDF

An Efficient On-line Identification Approach to Rotor Resistance of Induction Motors Without Rotational Transducers

  • Lee, Sang-Hoon;Yoo, Ho-Sun;Ha, In-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.86-93
    • /
    • 1998
  • In this paper, we propose an effective on-line identification method for rotor resistance, which is useful in making speed control of induction motors without rotational transducers robust with respect to the variation in rotor resistance. Our identification method for rotor resistance is based on the linearly perturbed equations of the closed-loop system for sensorless speed control about th operating point. Our identification method for rotor resistance uses only the information of stator currents and voltages. In can provide fairly good identification accuracy regardless of load conditions. Some experimental results are presented to demonstrate the practical use of our identification method. For our experimental work, we have built a sensorless control system, in which all algorithms are implemented on a DSP. Our experimental results confirm that our on-line identification method allows for high precision speed control of commercially available induction motors without rotational transducers.

  • PDF