• Title/Summary/Keyword: Rotational mode

Search Result 253, Processing Time 0.031 seconds

Motion of a System with Varying Damping Subject to Harmonic Force - Analytical Analysis (변화하는 감쇠를 갖는 계가 조화력을 받을 때의 운동 - 이론적 해석)

  • Park, O-Cheol;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.898-902
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$ respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. Part of these simulation results are proved analytically.

  • PDF

Buckling behaviour of plates partially restrained against rotation under stress gradient

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 1996
  • In this paper, the behavior of plates partially restrained against rotation under stress gradient is investigated. As a first stage, an energy formulation is presented to model this boundary condition and a general expression is derived for the prediction of the elastic buckling of the plate under this general loading condition. The accuracy of the derived expression is compared numerically using the Galerkin method with other available data for the two limiting conditions of rotationally free and clamped boundaries. Results show that the prediction is within a 5% difference. The influence of rotational restraint and stress gradient upon the buckling load and the associated buckling mode is investigated. Numerical results show sensitivity of the buckling mode to the degree of rotational restraint and the variation of the buckling load with the stress gradient.

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.958-963
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation $f_1\;and\;f_2$, respectively, the displacement at the center of the plate has the strongest component at frequency $f_1$. The angular displacement of the plate has strong components at $f_1-f_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shaker with low frequencies.

Development of a 3-D Rehabilitation Robot System for Upper Extremities (상지 재활을 위한 3-D 로봇 시스템의 개발)

  • Shin, Kyu-Hyeon;Lee, Soo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.64-71
    • /
    • 2009
  • A 3-D rehabilitation robot system is developed in this paper. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for enabling occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system, which is driven by actuators, has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. Passive motion mode experiments have been performed to evaluate the proposed robot system. The results of the experiments show and excellent performance in simulating spasticity of patients.

A Precision Rotational Device using Piezoelectric Elements and Impact Drive Mechanism (압전소자와 충격구동 메커니즘을 이용한 초정밀 회전장치)

  • Ten, Aleksey-Deson;Ryu, Bong-Gon;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • This paper describes the design, construction, and fundamental testing of a precision rotational device that utilizes piezoelectric elements as a source of driving force and impact drive mechanism as a driving principle. A novel device structure is designed and the numerical simulations about the static displacement, stress distribution, and mode shape of the designed structure are performed. A fabricated rotational device has been rotated successfully by applying saw-shaped voltages to the piezoelectric elements. The one-step rotational angle was $0.44{\times}10^{-3}$ rad at the applied voltages of 80V. The angular velocities of the device were revealed to be increased as the driving frequency and voltage were respectively increased and the preload was decreased. The device has a feature that it can be translated as well as rotated. An experimental result shows that the device was translated by ${\pm}4.56{\mu}m$ maximum when the 120V sinusoidal voltages with a phase difference of $180^{\circ}$ were respectively supplied to two piezoelectric elements.

Flexural Strength and Rotational Stiffness Estimation of Joint between Vertical and Horizontal Members in System Support (시스템 동바리 수직재와 수평재 연결부의 휨강도와 회전 강성 평가)

  • Won, Jeong-Hun;Lee, Hyung Do;Choi, Myeong-Ki;Park, Man Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.46-53
    • /
    • 2018
  • This study examined the maximum resistant moment and nonlinear rotational stiffness of wedge joint between the vertical and horizontal members of system supports. To examine the maximum resistant moment and propose the nonlinear rotation stiffness of wedge joint, 6 specimens were tested and additional 3 specimens, where the horizontal member was welded to the vertical member, were tested to compare the moment capacity of wedge joints. The average maximum moment in the tested wedge joint was 1.183 kNm which represented about 70 % of the maximum moment developed in the welded specimens. And, as simulating nonlinear rotational stiffness of the wedge joint, a tri-linear model was suggested. The rotational stiffness was estimated as 23.095 kNm/rad in first stage, 7.945 kNm/rad in second stage, and 3.073 kNm/rad in third stage. For the failure mode, the specimen with the wedge joint showed the failure of joint between vertical and horizontal members. However, the specimen with welded joint represented the yielding of horizontal members.

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities (상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어)

  • Lee, Soo-Han;Shin, Kyu-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.