• 제목/요약/키워드: Rotational mode

검색결과 253건 처리시간 0.027초

탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향 (The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

회전속도 의존매개변수를 갖는 회전체-베어링계의 동적해석프로그램 개발 (Development of Dynamic Anlaysis Software for Rotor-Bearing Systems with Rotational Speed Depending Parameters)

  • 장수현;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1991년도 춘계학술대회논문집; 한국해사기술연구소, 대전; 1 Jun. 1991
    • /
    • pp.91-93
    • /
    • 1991
  • DARBS는 저널베어링 및 구름베어링에 지지되어 있는 회전체-베어링계에 대한 동력학적 해석을 수행하는 프로그램이다. 해석에는 유한요소법(finite element method)을 이용하며 선회속도(whirl speed), 모우드 형성(mode shape), 임계속도(ciritical speed) 그리고 비동기 가진응답(asynchronous response)등에 대한 해석결과를 제공한다. 본 프로그램의 주된 특징은 람다 행렬(lambda matrices)의 개념을 도입하여 비동기 가진응답의 해석에 적용하 고, 베어링 상수와 자이로 효과와 같은 회전속도 의존성에 대하여 체계적인 접근방법을 사용했다는 점이다. 본 프로그램은 IBM PC 및 호환 기종에 적 합하도록 개발되었으며 기본적인 출력장치를 지원하는 S/W가 포함되어 있 다. 또한 대화식 데이타 입력과 메뉴처리방식을 채택하여 사용하기 편리하게 하였으며, 오류발생시 메세지가 나타나 오류수정을 용이하게 하였다.

  • PDF

테두리가 보강된 회전 원판의 반-유한요소해석 (Semi-finite Element Analysis of Rotating Disks Reinforced at Rim)

  • 구교남
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.537-544
    • /
    • 2009
  • In order to increase the critical speed of rotating disks of which functional material could not be changed such as in optical and magnetic data storage disks, a new disk with a rim reinforced by composite material is proposed and its concept is verified by numerical analysis. Stress distributions are found for the rotating disk composed of two annular disks of which materials are isotropic inside and orthotropic outside. Dynamic equation is formulated in order to calculate the natural frequency and critical speed. For the solution of lateral vibration, a rotational symmertry condition is applied along circumferential direction and a finite element interpolation with Hermite polynomial is performed along the radial direction to obtain a proper solution. According to the results, reinforcing a disk at rim makes critical speeds drastically increased, and induces a buckling phenomenon in mode (0,0) which occurs over the lowest critical speed.

GER 유체를 이용한 ER Brake System의 설계 및 속도 제어 (Design and Speed Control of ER Brake System Using GER Fluids)

  • 육지용;최승복;육운수
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.365-371
    • /
    • 2012
  • This paper presents robust control performance of a direct current(DC) motor with brake system adopting a giant electrorheological(GER) fluid, whose distinguished feature is an extremely high value of yield stress. As a first step, Bingham characteristics of the GER fluid is experimentally investigated using the Couette type electroviscometer. A cylindrical type of ER brake is then devised based on the Bingham model, and its braking torque is evaluated. Structural analysis of ER break is performed using ANSYS. After formulating the governing equation of motion for the DC motor with ER brake system, a sliding mode control algorithm, which is very robust to external disturbances and parameter uncertainties, is synthesized and experimentally realized in order to achieve desired rotational speed trajectories. The tracking responses of the control system are then evaluated and verified by presenting speed control performance.

공기 베어링 개념을 이용한 디스크 진동 저감 연구 (Disk Vibration Suppression with Air Bearing Concept)

  • 최의곤;임윤철
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.197-203
    • /
    • 2004
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue in order to reduce the track mis-registration. In this work, we propose a simple inclined air bearing (20${\times}$20 mm) system which is located very near to the rotating poly-carbonate disk, and investigate suppressing effect for the disk vibration mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of air bearing and then apply those values to the disk vibration analysis. Numerical results show about 10 percent difference comparing to the experimental results. Also we investigate the reduction of disk vibration and power consumption with two different kinds of inclined bearing for the normal disk drive system experimentally. We find inclined air bearing can reduce about 30 percents of the transverse disk vibration.

고낙차 펌프-터빈에서의 축계 진동 특성 (Characteristics of the Shaft Vibration in a High Head Pump-Turbine)

  • 하현천;최성필
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

고낙차 펌프-터빈에서의 축계 진동 특성 (Characteristics of the Shaft Vibration in a High Head Pump-Turbine)

  • 하현천;최성필
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

단일 진동체의 진동 흡진기 설계 기법 (Design of a Vibration Absorber for an Elastically Suspended Rigid Body)

  • 김동욱;최용제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.190-197
    • /
    • 2002
  • A new design methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane vibration modes and thereby combined the two cases for a six-degree-of-freedom absorber. The nine possible design methods are suggested for the six-degree-of-freedom absorber when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

전단변형을 고려한 회전 가능한 지점을 갖는 원호 아치의 자유진동 (Free Vibrations of Shear Deformable Circular Arches with Rotationally Flexible Supports)

  • 오상진;윤희민;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1181-1184
    • /
    • 2007
  • 이 논문에서는 단부가 힌지와 회전스프링으로 지지된 원호 아치의 면내 자유진동에 대한 지배 미분방정식을 수치해석하여 대상 구조에 대한 최저차 4개의 고유진동수 및 진동형을 산출하였다. 축변형, 회전관성 및 전단변형 효과를 고려한 지배방정식을 채택하였으며, 해석결과로서 아치 중심각, 세장비 및 단부의 회전스프링상수 변화에 따른 고유진동수 및 진동형의 변화를 고찰하였다.

  • PDF

타원궤적 절삭기의 가진주파수에 따른 절삭 날 회전 진동 특성 (Characteristics of Rotational Vibration of Cutting Edge in Elliptical Vibration Cutting by Modulation of Excitation Frequency)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.258-263
    • /
    • 2011
  • The direction of the cutting tool plays a critical role in elliptical vibration cutting(EVC) where the cutting tool cuts workpiece in a trochoidal motion. In this study, EVC cutting device was developed using two parallel piezoelectric materials and it was observed that the rotation direction of the tool reverses as the EVC device undergoes resonance at which either flexural(cutting direction) or longitudinal( thrust direction) mode shapes occurs. To analytically explain reversal of the rotation direction, kinematic motion analysis of the tool was modified to incorporate amplification of the vibration amplitude and phase introduced by resonance. It successfully demonstrated, through Matlab simulation, reversal of the rotation direction of the cutting tool as the excitation frequency increases beyond resonance frequencies at which either flexural or longitudinal vibration occurs.