• Title/Summary/Keyword: Rotation-invariant

Search Result 256, Processing Time 0.02 seconds

A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features (특징의 효과적 병합에 의한 광고영상정보의 분류 기법)

  • Jeong, Jae-Kyong;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.66-77
    • /
    • 2011
  • We propose a framework for grouping photographic advertising images that employs a hierarchical indexing scheme based on efficient feature combinations. The study provides one specific application of effective tools for monitoring photographic advertising information through online and offline channels. Specifically, it develops a preprocessor for advertising image information tracking. We consider both global features that contain general information on the overall image and local features that are based on local image characteristics. The developed local features are invariant under image rotation and scale, the addition of noise, and change in illumination. Thus, they successfully achieve reliable matching between different views of a scene across affine transformations and exhibit high accuracy in the search for matched pairs of identical images. The method works with global features in advance to organize coarse clusters that consist of several image groups among the image data and then executes fine matching with local features within each cluster to construct elaborate clusters that are separated by identical image groups. In order to decrease the computational time, we apply a conventional clustering method to group images together that are similar in their global characteristics in order to overcome the drawback of excessive time for fine matching time by using local features between identical images.

Content Based Image Retrieval using 8AB Representation of Spatial Relations between Objects (객체 위치 관계의 8AB 표현을 이용한 내용 기반 영상 검색 기법)

  • Joo, Chan-Hye;Chung, Chin-Wan;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.304-314
    • /
    • 2007
  • Content Based Image Retrieval (CBIR) is to store and retrieve images using the feature description of image contents. In order to support more accurate image retrieval, it has become necessary to develop features that can effectively describe image contents. The commonly used low-level features, such as color, texture, and shape features may not be directly mapped to human visual perception. In addition, such features cannot effectively describe a single image that contains multiple objects of interest. As a result, the research on feature descriptions has shifted to focus on higher-level features, which support representations more similar to human visual perception like spatial relationships between objects. Nevertheless, the prior works on the representation of spatial relations still have shortcomings, particularly with respect to supporting rotational invariance, Rotational invariance is a key requirement for a feature description to provide robust and accurate retrieval of images. This paper proposes a high-level feature named 8AB (8 Angular Bin) that effectively describes the spatial relations of objects in an image while providing rotational invariance. With this representation, a similarity calculation and a retrieval technique are also proposed. In addition, this paper proposes a search-space pruning technique, which supports efficient image retrieval using the 8AB feature. The 8AB feature is incorporated into a CBIR system, and the experiments over both real and synthetic image sets show the effectiveness of 8AB as a high-level feature and the efficiency of the pruning technique.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

Content-based Image Retrieval Using Color Adjacency and Gradient (칼라 인접성과 기울기를 이용한 내용 기반 영상 검색)

  • Jin, Hong-Yan;Lee, Ho-Young;Kim, Hee-Soo;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.104-115
    • /
    • 2001
  • A new content-based color image retrieval method integrating the features of the color adjacency and the gradient is proposed in this paper. As the most used feature of color image, color histogram has its own advantages that it is invariant to the changes in viewpoint and the rotation of the image etc., and the computation of the feature is simple and fast. However, it is difficult to distinguish those different images having similar color distributions using histogram-based image retrieval, because the color histogram is generated on uniformly quantized colors and the histogram itself contains no spatial information. And another shortcoming of the histogram-based image retrieval is the storage of the features is usually very large. In order to prevent the above drawbacks, the gradient that is the largest color difference of neighboring pixels is calculated in the proposed method instead of the uniform quantization which is commonly used at most histogram-based methods. And the color adjacency information which indicates major color composition feature of an image is extracted and represented as a binary form to reduce the amount of feature storage. The two features are integrated to allow the retrieval more robust to the changes of various external conditions.

  • PDF

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

3D Model Retrieval Using Sliced Shape Image (단면 형상 영상을 이용한 3차원 모델 검색)

  • Park, Yu-Sin;Seo, Yung-Ho;Yun, Yong-In;Kwon, Jun-Sik;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.27-37
    • /
    • 2008
  • Applications of 3D data increase with advancement of multimedia technique and contents, and it is necessary to manage and to retrieve for 3D data efficiently. In this paper, we propose a new method using the sliced shape which extracts efficiently a feature description for shape-based retrieval of 3D models. Since the feature descriptor of 3D model should be invariant to translation, rotation and scale for its model, normalization of models requires for 3D model retrieval system. This paper uses principal component analysis(PCA) method in order to normalize all the models. The proposed algorithm finds a direction of each axis by the PCA and creates orthogonal n planes in each axis. These planes are orthogonalized with each axis, and are used to extract sliced shape image. Sliced shape image is the 2D plane created by intersecting at between 3D model and these planes. The proposed feature descriptor is a distribution of Euclidean distances from center point of sliced shape image to its outline. A performed evaluation is used for average of the normalize modified retrieval rank(ANMRR) with a standard evaluation from MPEG-7. In our experimental results, we demonstrate that the proposed method is an efficient 3D model retrieval.