• Title/Summary/Keyword: Rotation behavior

Search Result 537, Processing Time 0.027 seconds

Fiber-optic rotation angle sensor based on fused fiber coupler (융착 광섬유 커플러를 이용한 회전 각도 센서)

  • Kim, Kwang-Taek;Cho, Kyu-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • We have proposed and demonstrated a rotation angle sensor based on the stress -optic effect of a fused fiber coupler whose transmission spectrum is altered by the torsional stress. The peak of transmission spectrum was shifted to longer wavelength region with rotation of the coupler. The rotation angle sensor revealed reproducibility and symmetric behavior with respect to the rotation direction. The sensitivity of the sensor was 0.367 [nm/degee].

Effects of rotation speed and time in potentiostatic experiment in seawater for 5083-H116 Al alloy

  • Lee, Seung-Jun;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.974-980
    • /
    • 2014
  • Aluminum acts as sacrificial anode and corrosion protection with Al2O3 formation. If the same current on material for Al ships with steel ships supplies, the more hydrogen would be occurred, that result is bring about over-protection. For this reason, the damage by hydrogen embrittlement leads to the serious accident. In this study, we evaluate electrochemical behavior with rotation speed of 5083-H116 Al alloy material for Al ship in seawater. To examine the electrochemical characteristics with rotation speed and its effects on performance, experiments were conducted at four rotation speed. Results of experiments, the corrosion current density and damage were increased by applying the rotation speed compared to static state.

An Analytic Study on the Valve Rotation Behavior of an Internal Combustion Engine (내연기관 밸브회전 거동에 관한 해석적 연구)

  • Kim, Do-Joong;Youn, Jae-Won;Kim, Jin-Woung;Song, Jin-Ook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2006
  • Rotation of intake and exhaust valves are very closely related to the long term durability of automotive engines. If the valves do not rotate even at a rated engine speed, it causes the uneven wear of the valve seat and valve head contact area, which eventually shortens the engine life. A principle of valve rotation mechanism was presumed based on some findings from experiments, and computer programs were developed to simulate the valve rotation phenomena. In this study we investigated the valve rotation mechanism by using the computer simulation models.

Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames (강구조 특수모멘트골조의 보 소성변형요구량 평가)

  • Eom, Tae-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.405-415
    • /
    • 2011
  • For the safe seismic design of buildings, it is necessary to predict the plastic deformation demands of the members as well as the story drift ratio. In the present study, a simple method of estimating the beam plastic rotation was developed for special-moment-resisting steel frame structures designed with strong column-weak beam behavior. The proposed method uses elastic analysis rather than nonlinear analysis, which is difficult to use in practice. The beam plastic rotation was directly calculated based on the results of the elastic analysis, addressing the moment redistribution, the column and joint dimensions, the movement of the plastic hinge, the panel zone deformation, the gravity load, and the strain-hardening behavior. In addition, the rocking effect of the braced frame or core wall on the beam plastic rotation was addressed. For verification, the proposed method was applied to a six-story special-moment frame designed with strong column-weak beam behavior. The predicted plastic rotations of the beams were compared with those that were determined via nonlinear analysis. The beam plastic rotations that were predicted using the proposed method correlated well with those that were determined from the nonlinear pushover analysis.

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Enhancing prediction of the moment-rotation behavior in flush end plate connections using Multi-Gene Genetic Programming (MGGP)

  • Amirmohammad Rabbani;Amir Reza Ghiami Azad;Hossein Rahami
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.643-656
    • /
    • 2024
  • The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

Moment-Rotation Relation of Steel Connections with Fixed-End Restraint (단부구속도에 따른 철골 접합부의 모멘트-회전각 관계에 관한 연구)

  • Ahn, Hyung-Joon;Kim, Keon-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.219-223
    • /
    • 2002
  • The actual behavior of joint is traditionally disregarded in steel frame design. In fact, the structural analysis of steel frames is generally carried out by assuming that joints fulfil the ideal condition of either a hinge or a fixed-end restraints. In this way, calculations are made somewhat simpler, but the structural model is not able to reflect the actual structural response. Therefore, steel frame classification system for estimation or analysis about behavior of steel frame should be established, and range that each connections belongs should be divided definitely. This research presents realistic and practical moment-rotation relation through investigation and analysis of steel frame beam-to-column classification system.

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.