• Title/Summary/Keyword: Rotation Velocity

Search Result 521, Processing Time 0.025 seconds

Effect of Blade Number Variations on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 블레이드 수 변화가 마이크로 중력식 와류 수차 성능에 미치는 영향)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.176-183
    • /
    • 2023
  • The aim of this paper is to understand the blade number effect on vortex turbine performance in the cylindrical vortex chamber below the free water surface. Using the same blade profile, the performance of gravitational vortex turbine is tested each with 2, 3, 4, 5 and 6 blades installed at the relative vortex height (y/hv) ranging from 0.065 to 0.417. The obtained results indicate that the rotation, voltage, current and power increase in the relative vortex height of 0.065 and 0.111 when increasing the number of blades at flow velocity of less than 0.7 m/s. The average power of the 5-blade turbine is more than others. The performance of the 4-blade turbine with a 130 mm diameter installed near the orifice is higher than that of the same number of blades with a 220 mm diameter in the vortex chamber.

Kinematic Distances of the Galactic Supernova Remnants in the First Quadrant

  • Lee, Yong-Hyun;Koo, Bon-Chul;Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.43.2-44
    • /
    • 2020
  • We have carried out high-resolution near-infrared (NIR) spectroscopic observations toward 16 Galactic supernova remnants (SNRs) showing strong H2 emission features. A dozen bright H2 emission lines are clearly detected for individual SNRs, and we have measured their central velocities, line widths, and fluxes. For all SNRs except one (G9.9-0.8), the H2 line ratios are well consistent with that of thermal excitation at T~2000 K and their line widths are broader than ~10 km s-1, indicating that the H2 emission lines are most likely from shock-excited gas and therefore that they are physically associated with the remnants. The kinematic distances to the 15 SNRs are derived from the central velocities of the H2 lines using a Galactic rotation model. We derive for the first time the kinematic distances to four SNRs: G13.5-0.2, G16.0-0.5, G32.1-0.9, G33.2-0.6. Among the rest 11 SNRs, the central velocities of the H2 emission lines for six SNRs are well consistent (±5 km s-1) with those obtained in previous radio observations, while for the other five SNRs (G18.1-0.1, G18.9-1.1, Kes 69, 3C 396, W49B), they are significantly different. We discuss the velocity discrepancies in these five SNRs. In G9.9-0.8, the H2 emission shows non-thermal line ratios and very narrow line width (~4 km s-1), and we discuss its origin.

  • PDF

ERotating Bondi Accretion Flow with and without outflow

  • Han, Du-Hwan;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.4-53
    • /
    • 2020
  • It is less well known that the properties, especially the mass accretion rate, of accretion flow are affected by the angular momentum of accreting gas. Park (2009) found that the mass accretion rate \dot{m}, mass accretion rate in units of Bondi accretion rate, is inversely proportional to the angular momentum of gas λ, at the Bondi radius where gas sound speed is equal to the free-fall velocity and proportional to the viscosity parameter α, and also Narayan & Fabian (2011) found a similar relation, but the dependence of the mass accretion rate of the gas angular momentum is much weaker. In this work, we investigate the global solutions for the rotating Bondi flow, i.e., polytropic flow accreting via viscosity, for various accretion parameters and the dependence of the mass accretion rate on the physical characteristics of gas. We set the outer boundary at various radius r_{out}=10^3~10^5 r_{Sch}, where r_{Sch} is the Schwarzschild radius of the black hole. For a small Bondi radius, the mass accretion rate changes steeply, as the angular momentum changes, and for a large Bondi radius, the mass accretion rate changes gradually. When the accreting gas has a near or super Keplerian rotation, we confirm that the relation between the mass accretion rate and angular momentum is roughly independent of Bondi radius as shown in Park (2009). We find that \dot{m} is determined by the gas angular momentum at the Bondi radius in units of r_{Sch}c. We also investigate the solution for the rotating Bondi flow with the outflow. The outflow affects the determination of the mass accretion rate at the outer boundary. We find that the relation between the mass accretion and the gas angular momentum becomes shallower as the outflow strengthens.

  • PDF

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

Effect of Lumbar HVLA Technique and Decompression Therapy for Lumbar Herniation Disk (허리뼈 도수교정과 감압치료가 허리뼈 사이원반 탈출증에 미치는 영향)

  • Kang-O Oh
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.65-74
    • /
    • 2024
  • PURPOSE: This study aimed to determine the changes in the lumbar herniation index, Oswestry disability index (ODI), visual analog scale (VAS), and lumbar flexion range of motion (ROM) following the application of high velocity- low amplitude (HVLA) technique and depression therapy in patients with lumbar herniation discs, and thus to provide a clinical basis for the treatment of lumbar herniation discs. METHODS: We included 45 patients with lumbar herniation discs who were assigned equally to three groups: HVLA technique, depression therapy, and control group. Three times a week for 4 weeks, conservative therapy plus Maitland's lumbar spine rotation technique was applied to the HVLA technique group for 30 min and conservative therapy plus decompression therapy for 30 min to the decompression therapy group, while only conservative therapy was applied to the control group. The lumbar herniation index and Korean version ODI were measured twice before starting and after completing the treatment. The VAS and lumbar flexion ROM were measured before and after each treatment session for twelve. The collected data were analyzed using SPSS software version 21.0. RESULTS: The lumbar herniation index was significantly lower in both the HVLA technique and decompression therapy groups compared to the control group, with decompression therapy being the most effective in reducing the lumbar herniation index. Significant improvements were observed in the ODI, VAS score, and lumbar flexion ROM across all three groups, with HVLA technique being the most effective. CONCLUSION: HVLA Techniqueand decompression therapy were more effective than conservative therapy in reducing the lumbar herniation index, ODI, and VAS scores, and in increasing lumbar flexion ROM. This suggests the importance of combining HVLA technique or decompression therapy along with conservative physical therapy for the effective treatment of lumbar herniation discs.

  • PDF

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Kinematical Differences of the Male Professional Golfers' 30 Yard Chip Shot and Pitch Shot Motion (남자프로골퍼의 30 야드 칩샷과 피치샷 동작의 운동학적 차이)

  • Pyun, Eun-Kyung;Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2007
  • Even though there were no clear definitions of the short game and short game distance, short game capability is crucial for a good golf score. Generally, chip shot and pitch shot are regarded as two principal components of the short game. Chip shot is a short, low trajectory shot played to the green or from trouble back into play. Pitch shot is a high trajectory shot of short length. Biomechanical studies were conducted usually to analyze full swing and putting motions. The purpose of the study was to reveal the kinematical differences between professional golfers' 30 yard $53^{\circ}wedge$ chip shot and $56^{\circ}wedge$ pitch shot motions. Fifteen male professional golfers were recruited for the study. Kinematical data were collected by the 60 Hz three-dimensional motion analysis system. Statistical comparisons were made by paired t-test, ANOVA, and Duncan of the SPSS 12.0K with the $\alpha$ value of .05. Results show that both the left hand and the ball were placed left of the center of the left and right foot at address. The left hand position of the chip shot was significantly left side of that of the pitch shot. But the ball position of the pitch shot was significantly right side of that of the chip shot. All body segments aligned to the left of the target line, open, at address. Except shoulder, there were no significant pelvis, knee, and feet alignment differences between chip shot and pitch shot. These differences at address seem for the ball height control. Pitch shot swing motions(the shoulder and pelvis rotation and the club head travel distance) were significantly bigger than those of the chip shot. Club head velocity of the pitch shot was significantly faster than that of the chip shot at the moment of impact. This was for the same shot length control with different lofted clubs. Swing motion differences seem mainly caused by the same shot length control with different ball height control.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.

Three-Dimensional Video Analysis of the Gate Patterns in Normal Children and Hemiplegic Children with Cerebral Palsy (정상아와 편마비 뇌성마비아의 삼차원 보행분석)

  • Lee Jin-Hee;Bae Sung-Soo;Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.127-145
    • /
    • 1997
  • The purpose of this study wa9 to analyse the gait patterns of two female children with hemiplegic cerebral palsy by using the three-dimensional video motion analysis technique. Case 1 has mild spastic hemiplegia on the right side while Case 3 has moderate spastic hemiplegia on the left side. A group of 10, normal female children of the same age(7-8 years old) were selected as the control group for comparison. Time and distance variables as well as the Center of Mass displacement, and the pelvic and joint motions in three anatomical planes were analysed for this purpose. The following observations were made through the analysis : Case 1 revealed an asymmetrical gait pattern in which the step length of the unaffected side was shorter than that of the affected side, which wan a result of the effort to minimize loading on the affected leg by shortening the swing phase of the unaffected leg. Case 1 scored similar phase ratios, cadence and walking velocity to the normal group. A slight posterior tilt of the pelvis was observed throughout the gait cycle. Less hip and knee flexion than the normal group was observed, and demonstrated hyperextension of the knee in the terminal stance phase. The main problem in case 1 originated from the insufficient dorsiflexion of the affected foot during the swing phase. Therefore, Case 1 has difficulty with foot clearance in the swing phase. Usually, this is compensated for by using exessive hip abduction and medial rotation in conjuction with trunk elevation as well as increased vortical displacement of the center of mass. Case 1 revealed a foot-flat initial contact pattern. Case 2 was characterized by a consistent retraction ef the affected aide of the body througout the gait cycle, As a result, an asymmetrical gait pattern with increased stance phase ratios of the unaffected side was observed. In spite of this the step lengths of both sieds were similar. Case 2 scored lower cadence and walking speed than the normal group with lower gait stability. The main problem in Case 2 originated from an excessive plantaflexion of the affected foot which, in turn, rebutted in high hip and knee flexion. Hyperextension of the knee was observed at mid-stance, and execessive anterior tilt of the pelvis throughout the gait cycle was noticed. A gait pattern with high hip abduction and medial circumduction was maintained for the stability in the stance phase and foot clearance in the swing phase. Case 2 revealed a forefoot-contact initial contact pattern.

  • PDF