• Title/Summary/Keyword: Rotating wall

Search Result 205, Processing Time 0.024 seconds

The Flow Field Characteristics of a Rotating Circular Cylinder near a Plane Wall (벽면에 근접해서 회전하는 원주의 유동장 특성)

  • Kang, Myung-Hun;Kim, Kwang-Seok;Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.166-172
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder. the space ratios $H/D(H/D=0.05{\sim}0.5)$ between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with increasing the space ratios and the velocity ratios. the lower separation point was more shifted in the rotating direction with them.

The Magnus Effect of a Rotating Circular Cylinder near a Plane Wall (벽면근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.42-47
    • /
    • 2006
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D$(H/D=0.05\sim0.5)$ between cylinder and plane wall and the velocity ratios $\alpha(\alpha=0\sim{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

  • PDF

Experimental Study on the Wall Jet Flow Induced by Impinging Circular Jet on Arotating Disk (충돌제트로 인한 회전원판 위의 벽제트유동에 관한 실험적 연구)

  • 강형석;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3386-3394
    • /
    • 1994
  • An experimental study has been performed on the flow over a rotating disk, where the diameter of the disk is 500 mm and the maximum vertical deviation of the upper surface is $50 \mu{m}$ for the whole range of the angular velocity up to 3400 rpm. The flow visualization experiment for the wall jet flow induced by impinging circular jet is carried out using schlieren system and measurements are made by 3-hole and 5-hole pitot tubes. Schlieren photographs show that as the rotating speed increases the wall jet flow becomes more stable and the size of the largest eddies becomes smaller. Measurements for impinging jet flow on the stationary disk verify the accuracy of the present experiment, and those for free rotating disk flow display the existence of transition region from laminar to turbulent flows. Measurements for impinging jet flow on the rotating disk exhibit the interaction between the wall jet and the viscous pumping effect, which explains the decay in size of turbulent eddies illustrated by the schlieren photographs.

The Effect of Film Thicknesses on Heat Transfer in a Rotating Heat Pipe with the Disc Evaporator (원판증발기를 가진 회전형 히트파이프에서 액막두께가 전열에 미치는 영향)

  • 권순석;장영석;유병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1572-1581
    • /
    • 1994
  • Heat transfer characteristics in a rotating heat pipe with evaporator of the rotating disc and the condenser of the screwed groove is investigated by numerical method for various dimensionless film thicknesses, Re, C_{p}{\Delta}T/h_{fg}$, rotational speed and working fluids. The temperature difference between evaporator wall and vapor increases a little, but the temperature difference between condenser wall and vapor decreases rapidly as Re increases. As the dimensionless film thickness decreases, the temperature difference of evaporator and condenser decreases. As the rotational speed increases, the temperature difference between evaporator wall and vapor increases but the temperature difference between condenser wall and vapor decreases. The Nusselt number can be shown as a function of dimensionless film thickness and Re, that is $Nu=0.963\cdot(\delta^{-1}(\omega/\vpsilon)^{-1/2}{\cdot}Re^{0.5025})$.

The Magnus Efface of a Rotating Circular Cylinder Near a Plane Wall (벽면 근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Oh, Se-Kyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.957-962
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D($H/D=0.05{\sim}0.5$) between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

Measurement of Surface Pressure Fluctuations on a Rotating Blade Using a Digital Recording Device (Digital Recording Device를 ol용한 회전중인 블레이드 표면의 압력섭동 측정)

  • Yun, Jung-Sik;Kang, Woong;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1119-1129
    • /
    • 2005
  • A new measurement system of wall pressure fluctuations on a rotating machinery, composed of digital recording device, was developed and evaluated. The small-sized digital recording device was attached on the rotating machinery and then was detached for data reduction. In order to obtain the system transfer function of the digital recording system, a dynamic calibration was performed utilizing the signal from a 1/8 inch B&K microphone as input. The time history of the unsteady pressure was then reconstructed from the output of the sensor by using this transfer function. The reconstructed pressure signals showed good agreement with the reference signal in both temporal and spectral sense. This sensor was then used to measure the wall pressure fluctuations on a rotating blade. An array of microphones were installed on the blade in the circumferential and radial directions. Various statistical moments were obtained from the measurement data set. Comparison of these quantities with the existing studies demonstrated satisfactory agreement. These tests give credence to the relevance and reliability of this device for applications in more complicated turbulent rotating machineries.

The Lateral Earth Pressure on Rigid Retaining Wall Due to the Various Modes of Wall Movement (벽체변위에 따른 기류벽에 작용하는 토압)

  • Chae, Yeong-Su;Im, Byeong-Ju;Baek, Yeong-Sik
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The reasonable static and dynamic earth pressure equations were developed by applying the Dubrova's theory and Chang's method to the following cases of wall movements; (1) Active case rotating about the top (2) Active case rotating about the bottom (3) Passive case rotating about the top (4) Passive case rotating about the bottom The equations are presented in accordance with particular wall displacements for the sand and cohesive back-fill, respectively. The results computed by the proposed equations are compared with the conventional theoretical values.

  • PDF

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.181-191
    • /
    • 2004
  • For a rigid retaining wall with rough face, the magnitude and distribution of active earth pressure on the wall are affected by the shape of failure surface and arching effect developed in the backfill as well as internal friction angle of the backfill and wall friction angle. Therefore, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

Vibration Characteristics of Rotating Disks with Aerodynamic Effect (II) - Experimental Verifications - (공기 유동 효과를 고려한 회전 디스크의 진동 특성 (II) - 실험적 검증 -)

  • Lim, Hyo-Suk;Yim, Vit;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of rotating disks are investigated in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments performed using a vacuum chamber and ASMO/DVD disks rotating in vacuum, open and enclosure in several gaps with stationary wall give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.