• Title/Summary/Keyword: Rotating machine

Search Result 450, Processing Time 0.025 seconds

Building Bearing Fault Detection Dataset For Smart Manufacturing (스마트 제조를 위한 베어링 결함 예지 정비 데이터셋 구축)

  • Kim, Yun-Su;Bae, Seo-Han;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.488-493
    • /
    • 2022
  • In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.

Optimization of the Scraper Speed and Improvement of the Refrigerant Path for the Evaporator of the Soft Ice Cream Machine (소프트 아이스크림 제조기 증발기의 스크레이퍼 회전수 최적화 및 냉매 유로 개선)

  • Baek, Seung-Hyuk;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.8-14
    • /
    • 2017
  • Improvements in the standard of living and lifestyle have led to increased sales of frozen milk products, such as soft ice cream or slush. These frozen milk products are commonly made in a small refrigeration machine. In a soft ice cream machine, the freezer is composed of a concentric cylinder, where the refrigerant flows in the annul us and the ice cream is made in the cylinder by a rotating scraper. In this study, an optimization and performance evaluation were conducted on a soft ice cream machine having a freezer volume of 2.8 liters. The optimization was focused on the scraper rotation speed and the refrigerant path of the freezer. The measurements included the temperature, pressure and consumed power. At the optimized speed of 124 rpm, ice cream was produced in 6 minutes and 2 seconds, and the COP was 0.90. Through a flow visualization study using air-water, the refrigerant path was improved. The improved design reduced the ice cream making time significantly. The present results may be used for the optimization of other refrigeration cycles, including those of frozen food products.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

Blending Effect on the Mechanical and Hand Properties of Wool/Acrylic Blend Knits

  • Park Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • Mechanical properties and hand evaluation of wool/acrylic(W/A) blend knits were conducted before and after repeated washing to get the optimum W/A blending ratio, which could help achieve the optimum mechanical and hand properties of the knits. The five test fabrics using the yarns with different W/A blending ratios($\%$), 100/0, 70/30, 50/50, 30/70, 0/100, were knitted. The fabrics were washed by a rotating drum type washing machine. Then, objective mechanical and hand properties were evaluated by KES-FB, Kawabata evalution system for fabric. The results are as follows: there was no change in the hand value of the knitted fabric with the W/A-blended yarn caused by the change in the blending ratio before washing. After washing, however, the increase of acrylic's blending rate caused the bending property to decrease proportionally, while the friction coefficient of the surface property increased. Furthermore, the study showed that W/A 50/50 possesses the most superior tensile property and shearing property, which could attain the optimum blending ratio. Similar results in hand value were derived in all the samples. After washing, however, the increase in acrylic's blending rate caused a proportional decrease in KOSHI and an increase in FUKURAMI. In addition, W/A 50/50 gained the biggest NUMERI value, again corresponding to the optimum blending ratio. Similar results in total hand value were derived in all the samples before washing. After washing, though, all the total hand values decreased, and, as the wool fabric's blending rate increased, the total hand values proportionally decreased further.

  • PDF

Power Balancing Strategy in the Microgrid During Transient (마이크로그리드 과도상태 시 전력 수급 균형 전략)

  • Seo, Jae-Jin;Lee, Hak-Ju;Jung, Won-Wook;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.

A Study on the Backward Extrusion of Internal Spline (내부 스플라인의 후방압출에 관한 연구)

  • Cho, YongIl;Choi, JongUng;Qiu, Yuangen;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.15-23
    • /
    • 2020
  • Spline is a machine component using transmits rotating energy with grooves on internal of boss and external periphery of shaft. Internal spline is generally produced by machining process. However, to reduce manufacturing cost and save time, plastic deformation process such as backward extrusion is gradually adapted for spline production. In plastic deformation process, forming load, stress on tools and flow flaws should be taken into account to have sound products. For this purpose, kinematically admissible velocity fields for Upper Bound Method in backward extrusion of internal spline has been suggested, then forming load and relative pressure have been calculated. Internal spline forming experiments have been con-ucted under hydraulic press and the calculated forming load well predicts the load of experiment.

A study on the heat generation into air film as rotating of high speed journal in the air journal bearing (공기저어널 베어링에서 저어널의 고속회전시 공기유막내의 열발생에 관한 연구)

  • 이종열;성승학;이득우;박보선;김태영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.82-86
    • /
    • 2002
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite difference method analysis obtain temperature rise and temperature distribution of housing. For the analysis, air fluid film model is built and temperature rise and distribution in thermal steady state are computed for each rotational speed. Generally, it is said that the heat generation of air bearing is negligible. But the heat generation in air film by heat dissipation can not be negligible especially into high-speed region of the journal. In case that the heat generation of air spindle system is high, natural frequency of the spindle system becomes lower when the thermal state is in steady-state and it means the changes of air bearing stiffness due to the change of bearing clearance. It is shown that the temperature rise of air spindle system causes thermal expansion and induces the variation of bearing clearance. In consequence the stiffness of air bearing becomes smaller.

  • PDF

Application of Adaptive Line Enhancer for Detection of Ball Bearing Defects (볼 베어링의 결함검출을 위한 Adaptive Line Enhancer의 적용)

  • Kim Young Tae;Choi Man Yong;Kim Ki Bok;Park Hae Won;Park Jeong Hak;Kim Jong Ock;Lyou Jun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.96-103
    • /
    • 2005
  • The early detection of the bearing defects in rotating machinery is very important since the critical failure of bearing causes a machinery shutdown. However it is not easy to detect the vibration signal caused by the initial defects of bearing because of the high level of random noise. A signal processing technique, called the adaptive line enhancer(ALE) as one of adaptive filter, is used in this study. This technique is to eliminate random noise with little a prior knowledge of the noise and signal characteristics. Also we propose the optimal methods fir selecting the three main ALE parameters such as correlation length filter order and adaptation constant. Vibration signals f3r three abnormal bearings, including inner and outer raceways and ball defects, were acquired by Anderon(angular derivative of radius on) meter. The experimental results showed that ALE is very useful f3r detecting the bearing defective signals masked by random noise.

The Analysis of the Unsteady Flow Field and Aerodynamic Sound of Fan Motor in a Vacuum Cleaner (진공청소기용 팬 모터의 비정상 유동 해석 및 공력소음 해석)

  • 김재열;심재기;송경석;오성민;양동조;김우진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.281-286
    • /
    • 2004
  • The vacuum cleaner motor runs on very high speed for the suction power. Specially, the motive power is provided by the impeller being rotate on very high speed. And centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed or the impeller and small gap distance between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, the unsteady flow data is needed. And Noise cause is dividing to fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, measuring method has been used to measure vibration by the accelerometer; this method has been not measured for the vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This paper was purposed on the accurate analysis, using laser vibration analyzer,. By using this measured data of noise cause against the difficult part in old times, we would like to use for the design of silent fan motor.

  • PDF

Rotating Accuracy Analysis for Spindle with Angular Contact Ball Bearings (각 접촉 볼베어링 스핀들의 회전정밀도 분석)

  • Hwang, Jooho;Kim, Jung-Hwan;Shim, Jongyoup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.735-739
    • /
    • 2013
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Spindle motion errors such as three translational motions and two rotational motions are undesirable. These are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, and external force or unbalance of rotors. The error motions of the spindle need to be reduced for achieving the desired performance. Therefore, the level of error motion needs to be estimated during the design and assembly process of the spindle. In this study, an estimation method for five degree-of-freedom (5 DOF) error motions for a spindle with an angular contact ball bearing is suggested. To estimate the error motions of the spindle, the waviness of the inner-race of bearings and an external force model were used as input data. The estimation model considers the geometric relationship and force equilibrium of the five DOFs. To calculate the error motions of the spindle, not only the imperfections of the shaft and bearings but also driving elements such as belt pulley and direct driving motor systems are considered.