• Title/Summary/Keyword: Rotating disk flow

Search Result 111, Processing Time 0.028 seconds

MODELING AND ANALYSIS ON THIN-FILM FLOW OVER A ROUGH ROTATING MAGNETIC DISK

  • Kim, Sung-Won;Moon, Byung-Moo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.645-649
    • /
    • 1995
  • The depletion of thin liquid films due to the combined effect of centrifugation, surface roughness, and air-shear has recently been studied. While surface roughness of a rotating solid disk can be represented by deterministic cures, it has been argued that spatial random processes provide a more realistic description. Chiefly because of surface roughness, there is an asymptotic limit of retention of a thin film flowing on the rotating disk. The aim of this article is to model the depletion of thin-film flow and analyze the interplay of centrifugation, surface tension, viscosity, air-shear, disjoining pressure, and surface roughness that affect the depletion of the film. Also, the robustness of stochastic description of surface roughness is examined.

  • PDF

COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR (회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가)

  • Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

Visualization of the flow between co-rotating disks in shroud with an obstruction (장애물을 포함한 동시회전 디스크 내부의 비정상 유동가시화)

  • 공대위;도덕희;주원구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1152-1156
    • /
    • 2003
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. PIV measurement was used fer the unsteady flow between the center pair of four disks of four times larger than common radius of HDD disk at several rpm in a fixed cylindrical enclosure. The boundary between inner region and outer region is detected using PIV measurement and the number of dominant vortices s determined clearly. Tip vortices generated by an obstruction with actual-like configuration can be found at inner region. Oscillating flow from the obstruction appears at outer region with complex flow pattern.

  • PDF

Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems (공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성)

  • Park, Sang-Won;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

A Study on the Flow Friction Loss of a Shrouded Rotating Disk (밀폐된 단일 회전 원판 주위의 유동손실에 관한 연구)

  • 조성욱;임윤철
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.292-297
    • /
    • 2003
  • The fundamental fluid mechanics associated with the rotation of a smooth plane disk enclosed within a cylindrical chamber have been studied experimentally. In order to acquire systematic information pertinent to this problem torque and friction loss data were obtained over a wide range of disk Reynolds numbers for axial clearance-disk radius ratio H/R from 0.025 to 0.2 and radial tip gap-disk radius ratio s/R from 0.021 to 0.105. Loss analysis of hard disk drive (HDD) is presented to describe the contribution of windage loss of a rotating disk. The minimum loss form factor of HDD can be obtained from this analysis at each operation conditions.

A study on the flow friction loss of a shrouded rotating disk (밀폐된 단일 회전 원판 주위의 유동손실에 관한 연구)

  • 조성욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.159-165
    • /
    • 2001
  • The fundamental fluid mechanics associated with the rotation of a smooth plane disk enclosed within a cylindrical chamber have been studied experimentally. In order to acquire systematic information pertinent to this problem torque and friction loss data were obtained over a wide range of disk Reynolds numbers for axial clearance-disk radius ratio H/R from 0.025 to 0.2 and radial tip gap-disk radius ratio s/R from 0.021 to 0.105. Loss analysis of hard disk drive(HDD) is presented to describe the contribution of windage loss of a rotating disk. The minimum loss from factor of HDD can be obtained from this analysis at each operation conditions.

  • PDF

Folw Between Corotating Shrouded Dicks -Experiment Simultion of Computer Hard Disk Storage System- (회전하는 원판사이에서의 유체유동)

  • 최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.281-289
    • /
    • 1992
  • In an attempt to simulate the flows in the computer hard disk storage system, flow visualization and quantification by image processing technique were applied. Model geometry was constructed while the dynamic similitude was maintained. Circumferential velocities were mapped out in the transient spin-up phase. During the spin-up phase, fluid close to the rotating inner hub approached the solid body rotation, while the fluid in the outer region showed the velocity deficit compared to the rotating speed of the disks. Effects of presence of read/write head arm assembly between the gap were studied by changing the location of the head. The experimental results could serve as a benchmark for the alidation of numerical codes.

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

Numerical Instability Analysis of the Rotating Boundary-Layer flow Including Pre-Swirl (예선회가 존재하는 회전유동장의 불안정성 수치해석)

  • Hwang, Young-Kyu;Lee, Yun-Yong;Lee, Kwang-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.415-423
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for these flows; Ro = -1, -0.5, and 0, using linear stability theory. Detailed numerical values of the disturbance wave number. wave frequency. azimuth angle. radius (Reynolds number, Re) and other characteristics have been calculated for the pre-swirl flows. On the basis of Ekman and Karman boundary layer theory, the instability of the pre-swirl flows have been investigated for the unstable criteria. The disturbance will be relatively fast amplified at small fe and within wide bands of wave number compared with previously known Karman boundary-layer results. The flow (Ro =-0.5) is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.9. It has a larger range of unstable interval than Karman boundary layer and can be unstable at smaller Re.